727 research outputs found

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits

    Get PDF
    Contains fulltext : 175039.pdf (publisher's version ) (Open Access)BACKGROUND: Age-related macular degeneration (AMD) is a common condition of vision loss with disease development strongly influenced by environmental and genetic factors. Recently, 34 loci were associated with AMD at genome-wide significance. So far, little is known about a genetic overlap between AMD and other complex diseases or disease-relevant traits. METHODS: For each of 60 complex diseases/traits with publicly available genome-wide significant association data, the lead genetic variant per independent locus was extracted and a genetic score was calculated for each disease/trait as the weighted sum of risk alleles. The association with AMD was estimated based on 16,144 AMD cases and 17,832 controls using logistic regression. RESULTS: Of the respective disease/trait variance, the 60 genetic scores explained on average 4.8% (0.27-20.69%) and 16 of them were found to be significantly associated with AMD (Q-values < 0.01, p values from < 1.0 x 10-16 to 1.9 x 10-3). Notably, an increased risk for AMD was associated with reduced risk for cardiovascular diseases, increased risk for autoimmune diseases, higher HDL and lower LDL levels in serum, lower bone-mineral density as well as an increased risk for skin cancer. By restricting the analysis to 1824 variants initially used to compute the 60 genetic scores, we identified 28 novel AMD risk variants (Q-values < 0.01, p values from 1.1 x 10-7 to 3.0 x 10-4), known to be involved in cardiovascular disorders, lipid metabolism, autoimmune diseases, anthropomorphic traits, ocular disorders, and neurological diseases. The latter variants represent 20 novel AMD-associated, pleiotropic loci. Genes in the novel loci reinforce previous findings strongly implicating the complement system in AMD pathogenesis. CONCLUSIONS: We demonstrate a substantial overlap of the genetics of several complex diseases/traits with AMD and provide statistically significant evidence for an additional 20 loci associated with AMD. This highlights the possibility that so far unrelated pathologies may have disease pathways in common

    A new approach for the limit to tree height using a liquid nanolayer model

    Full text link
    Liquids in contact with solids are submitted to intermolecular forces inferring density gradients at the walls. The van der Waals forces make liquid heterogeneous, the stress tensor is not any more spherical as in homogeneous bulks and it is possible to obtain stable thin liquid films wetting vertical walls up to altitudes that incompressible fluid models are not forecasting. Application to micro tubes of xylem enables to understand why the ascent of sap is possible for very high trees like sequoias or giant eucalyptus.Comment: In the conclusion is a complementary comment to the Continuum Mechanics and Thermodynamics paper. 21 pages, 4 figures. Continuum Mechanics and Thermodynamics 20, 5 (2008) to appea

    Asymptotically Free Non-Abelian Gauge Theories With Fermions and Scalars As Alternatives to QCD

    Get PDF
    In this paper we construct non-Abelian gauge theories with fermions and scalars that nevertheless possess asymptotic freedom.The scalars are taken to be in a chiral multiplet transforming as (2,2)(2,2) under SU(2)L⊗SU(2)RSU(2)_L\otimes SU(2)_R and transforming as singlets under the colour SU(3) group. We consider two distinct scenarios, one in which the additional scalars are light and another in which they are heavier than half the Z-boson mass. It is shown that asymptotic freedom is obtained without requiring that all additional couplings keep fixed ratios with each other. It is also shown that both scenarios can not be ruled out by what are considered standard tests of QCD like R- parameter, g-2 for muons or deep inelastic phenomena. The light mass scenario is however ruled out by high precision Z-width data (and only by that one data).The heavy mass scenario is still viable and is shown to naturally pass the test of flavour changing neutral currents. It also is not ruled out by precision electroweak oblique parameters. Many distinctive experimental signatures of these models are also discussed.Comment: 37 pages in LATEX with 10 fig

    Selectron Studies at e-e- and e+e- Colliders

    Get PDF
    Selectrons may be studied in both e-e- and e+e- collisions at future linear colliders. Relative to e+e-, the e-e- mode benefits from negligible backgrounds and \beta threshold behavior for identical selectron pair production, but suffers from luminosity degradation and increased initial state radiation and beamstrahlung. We include all of these effects and compare the potential for selectron mass measurements in the two modes. The virtues of the e-e- collider far outweigh its disadvantages. In particular, the selectron mass may be measured to 100 MeV with a total integrated luminosity of 1 fb^-1, while more than 100 fb^-1 is required in e+e- collisions for similar precision.Comment: 16 pages, 11 figure

    Finite covers of random 3-manifolds

    Full text link
    A 3-manifold is Haken if it contains a topologically essential surface. The Virtual Haken Conjecture posits that every irreducible 3-manifold with infinite fundamental group has a finite cover which is Haken. In this paper, we study random 3-manifolds and their finite covers in an attempt to shed light on this difficult question. In particular, we consider random Heegaard splittings by gluing two handlebodies by the result of a random walk in the mapping class group of a surface. For this model of random 3-manifold, we are able to compute the probabilities that the resulting manifolds have finite covers of particular kinds. Our results contrast with the analogous probabilities for groups coming from random balanced presentations, giving quantitative theorems to the effect that 3-manifold groups have many more finite quotients than random groups. The next natural question is whether these covers have positive betti number. For abelian covers of a fixed type over 3-manifolds of Heegaard genus 2, we show that the probability of positive betti number is 0. In fact, many of these questions boil down to questions about the mapping class group. We are lead to consider the action of mapping class group of a surface S on the set of quotients pi_1(S) -> Q. If Q is a simple group, we show that if the genus of S is large, then this action is very mixing. In particular, the action factors through the alternating group of each orbit. This is analogous to Goldman's theorem that the action of the mapping class group on the SU(2) character variety is ergodic.Comment: 60 pages; v2: minor changes. v3: minor changes; final versio

    Fertility, Living Arrangements, Care and Mobility

    Get PDF
    There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP

    Get PDF
    The process e+e- -> W+W-gamma is analysed using the data collected with the L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W- candidates containing an isolated hard photon, the W+W-gamma cross section, defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80 +/- 16 fb, consistent with the Standard Model expectation. Including the process e+e- -> nu nu gamma gamma, limits are derived on anomalous contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 < a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2

    Measurement of Bose-Einstein Correlations in e+e- -> W+W- at root(s)=189GeV

    Full text link
    We investigate Bose-Einstein correlations (BEC) in W-pair production at root(s)=189GeV using the L3 detector at LEP. We observe BEC between particles from a single W decay in good agreement with those from a light-quark Z decay sample. We investigate their possible existence between particles coming from different W's. No evidence for such inter-W BEC is found
    • 

    corecore