272 research outputs found

    Analysis of Corn Stover Structural Properties for Mechanical Processing Applications

    Get PDF
    The research objective of this study is to examine the behavior of chopped corn stover biomass as it undergoes a variety of mechanical loading conditions. Biomass materials, including corn stover, have unique properties that make it challenging to effectively and efficiently feed into thermochemical conversion systems that produce biofuels and bioproducts. These properties include large particle size, fibrous structure, and low density, to name a few. The most common difficulty in creating a system like this for corn stover is plugging within mechanical and pneumatic feeding systems. It is hypothesized that the material properties of fibrous corn stover contribute to its flowability characteristics. By placing different corn stover samples under varying loading conditions, the spectrum of physical properties of this fibrous agricultural residue can be better understood to analyze these previous issues. First, several corn stalk samples were placed in a three-point bending apparatus in order to analyze the energy requirements to chop a stalk, as well as to obtain a quantitative value for the fiber strength and resistance. This is important to make chopping operations more efficient. Then, a bulk solid shearing test was performed in order to determine some of the fluid-like properties associated with chopped biomass, such as internal friction. This is one of the properties that lead to consistent plugging in a piping system. By combining these two tests with future studies, a material database can be created for fibrous corn stover in order to better understand their flow and feeding characteristics

    Examination of near-wall hemodynamic parameters in the renal bridging stent of various stent graft configurations for repairing visceral branched aortic aneurysms

    Get PDF
    ObjectiveThis study examined the flow behavior of four stent graft configurations for endovascular repair of complex aneurysms of the descending aorta.MethodsComputational fluid dynamics models with transient boundary conditions and rigid wall simplifying assumptions were developed and used with four distinct geometries to compare various near-wall hemodynamic parameters.ResultsGraphic plots for time-averaged wall shear stress, oscillating shear index, and relative residence time were presented and compared among the four stent graft configurations of interest.ConclusionsAbrupt 90° and 180° changes in stent geometry (particularly in the side branches) cause a high momentum change and thus increased flow separation and mixing, which has significant implications in blood flow characteristics near the wall. By comparison, longer bridging stents provide more gradual changes in momentum, thus allowing blood flow to develop before reaching the target vessel.Clinical RelevanceRenal vessel patency is a well-known but rarely talked about challenge with complex aneurysm repair. Many factors need to be optimized to ensure branch vessel patency in aneurysms of the visceral segment, including bridging stent compliance transition, bridging stent material selection and design, and main body graft alignment. One topic that has not been discussed much is the flow characteristics entering the branch. Here we propose a technique to evaluate device configurations and their associated flows for their ability to maintain branch vessel patency

    A shared frequency set between the historical mid-latitude aurora records and the global surface temperature

    Full text link
    Herein we show that the historical records of mid-latitude auroras from 1700 to 1966 present oscillations with periods of about 9, 10-11, 20-21, 30 and 60 years. The same frequencies are found in proxy and instrumental global surface temperature records since 1650 and 1850, respectively and in several planetary and solar records. Thus, the aurora records reveal a physical link between climate change and astronomical oscillations. Likely, there exists a modulation of the cosmic ray flux reaching the Earth and/or of the electric properties of the ionosphere. The latter, in turn, have the potentiality of modulating the global cloud cover that ultimately drives the climate oscillations through albedo oscillations. In particular, a quasi 60-year large cycle is quite evident since 1650 in all climate and astronomical records herein studied, which also include an historical record of meteorite fall in China from 619 to 1943. These findings support the thesis that climate oscillations have an astronomical origin. We show that a harmonic constituent model based on the major astronomical frequencies revealed in the aurora records is able to forecast with a reasonable accuracy the decadal and multidecadal temperature oscillations from 1950 to 2010 using the temperature data before 1950, and vice versa. The existence of a natural 60-year modulation of the global surface temperature induced by astronomical mechanisms, by alone, would imply that at least 60-70% of the warming observed since 1970 has been naturally induced. Moreover, the climate may stay approximately stable during the next decades because the 60-year cycle has entered in its cooling phase.Comment: 18 pages, 11 figure

    The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects

    Get PDF
    When a carbon reservoir has a lower radiocarbon content than the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, that is, the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs, and the fate of atmospheric CO2, all of which impact Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 58A (2014): 139-167, doi:10.1016/j.marpetgeo.2014.07.024.The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed. In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands. Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced consolidation and triaxial strength test results and can be used for predicting behavior in other NGHP-01 regions. Pseudo-overconsolidation is present near the seafloor and is underlain by underconsolidation at depth at some NGHP-01 locations.This work was supported by the Coastal and Marine Geology, and Energy Programs of the U.S. Geological Survey. Partial support for this research was provided by Interagency Agreement DE-FE0002911 between the USGS Gas Hydrates Project and the U.S. Department of Energy's Methane Hydrates R&D Program

    Paleocene methane seep and wood-fall marine environments from Spitsbergen, Svalbard

    Get PDF
    A recently discovered Paleocene seep locality from Fossildalen on Spitsbergen, Svalbard, is described. This is one of a very few seep communities of the latest Cretaceous–earliest Palaeogene age, and the best preserved Paleocene seep community known so far. The seep carbonates and associated fossils have been first identified in museum collections, and subsequently sampled in the field. The carbonates are exclusively ex-situ and come from the offshore siltstones of the Basilika Formation. Isotopically light composition (δ13C values approaching -50‰ V-PDB), and characteristic petrographic textures of the carbonates combined with the isotopically light archaeal lipid are consistent with the formation at fossil hydrocarbon seep. The invertebrate fauna associated with the carbonates is of moderate diversity (16 species) and has a shallow water affinity. It contains a species of the thyasirid genus Conchocele, common in other seeps of that age. The finding sheds new light onto the history of seepage on Svalbard, and onto the evolution and ecology of seep faunas during the latest Cretaceous–earliest Palaeogene time interval

    Qualitative Research on Work-Family in the Management Field: A Review

    Get PDF
    Despite a proliferation of work-family literature over the past three decades, studies employing quantitative methodologies significantly outweigh those adopting qualitative approaches. In this paper, we intend to explore the state of qualitative work-family research in the management field and provide a comprehensive profile of the 152 studies included in this review. We synthesize the findings of qualitative work-family studies and provide six themes including parenthood, gender differences, cultural differences, family-friendly policies and non-traditional work arrangements, coping strategies, and under-studied populations. We also describe how findings of qualitative work-family studies compare to that of quantitative studies. The review highlights seven conclusions in the current qualitative literature: a limited number of qualitative endeavours, findings worth further attention, convergent foci, the loose use of work-family terminology, the neglect of a variety of qualitative research approaches, quantitative attitudes towards qualitative research, and insufficient reporting of research methods. In addition, implications for future researchers are discussed
    corecore