7,278 research outputs found

    Unionizing NCAA Division I Athletics: A Viable Solution?

    Get PDF
    This Note considers whether college athletes-specifically Division I football and men\u27s basketball players-can utilize the protections of the National Labor Relations Act to form unions. The Note examines the history of the National Collegiate Athletic Association, considers whether National Labor Relations Board jurisprudence allows the application of the NLRA to college athletics, and evaluates the potential consequences of the NLRB certifying a union of college athletes. The Note argues that the NLRB should not allow college athletes to unionize, but should instead let Congress decide whether college athletes are employees under the NLRA, and, if so, how they should be regulated

    Physiological assessment of operator workload during manual tracking. 1: Pupillary responses

    Get PDF
    The feasibility of pupillometry as an indicator for assessing operator workload during manual tracking was studied. The mean and maximum pupillary responses of 12 subjects performing tracking tasks with three levels of difficulty (bandwidth of the forcing function were 0.15, 0.30 and 0.50 Hz respectively) were analysed. The results showed that pupillary dilation increased significantly as a function of the tracking difficulty which was reflected by the significant increase of tracking error (RMS). The present study supplies additional evidence that pupillary response is a sensitive and reliable index which may serve as an indicator for assessing operator workload in man-machine systems

    Analysis of ITU-R Performance and Characterization of Ku Band Satellite Downlink Signals during Rainy Season over Chennai Region of India

    Get PDF
    In this paper, we present the analysis of Ku band Satellite signal reception during rainy season over Chennai region, India (Latitude: 12° 56' 60 N, Longitude: 80° 7' 60 E). We also examine the effectiveness of International Telecommunication Union – Radio communication (ITU-R) model in predicting the rainfall induced attenuation in Ku band, over this region. An improved Simulink model for Digital Video Broadcast – Satellite (DVB-S2) downlink channel incorporating rain attenuation and Cross Polarization Discrimination (XPD) effects is developed to study the rain attenuation effects, by introducing the experimental data in the ITU-R model pertaining to that region. Based on the improved model, a Monte Carlo simulation of the DVB–S2 signal link is carried out and the performance is analyzed by received constellation and Bit Error Rate (BER) parameters

    Measuring collaborative emergent behavior in multi-agent reinforcement learning

    Full text link
    Multi-agent reinforcement learning (RL) has important implications for the future of human-agent teaming. We show that improved performance with multi-agent RL is not a guarantee of the collaborative behavior thought to be important for solving multi-agent tasks. To address this, we present a novel approach for quantitatively assessing collaboration in continuous spatial tasks with multi-agent RL. Such a metric is useful for measuring collaboration between computational agents and may serve as a training signal for collaboration in future RL paradigms involving humans.Comment: 1st International Conference on Human Systems Engineering and Design, 6 pages, 2 figures, 1 tabl

    Hydrologic prediction using pattern recognition and soft-computing techniques

    Get PDF
    Several studies indicate that the data-driven models have proven to be potentially useful tools in hydrological modeling. Nevertheless, it is a common perception among researchers and practitioners that the usefulness of the system theoretic models is limited to forecast applications, and they cannot be used as a tool for scientific investigations. Also, the system-theoretic models are believed to be less reliable as they characterize the hydrological processes by learning the input-output patterns embedded in the dataset and not based on strong physical understanding of the system. It is imperative that the above concerns needs to be addressed before the data-driven models can gain wider acceptability by researchers and practitioners.In this research different methods and tools that can be adopted to promote transparency in the data-driven models are probed with the objective of extending the usefulness of data-driven models beyond forecast applications as a tools for scientific investigations, by providing additional insights into the underlying input-output patterns based on which the data-driven models arrive at a decision. In this regard, the utility of self-organizing networks (competitive learning and self-organizing maps) in learning the patterns in the input space is evaluated by developing a novel neural network model called the spiking modular neural networks (SMNNs). The performance of the SMNNs is evaluated based on its ability to characterize streamflows and actual evapotranspiration process. Also the utility of self-organizing algorithms, namely genetic programming (GP), is evaluated with regards to its ability to promote transparency in data-driven models. The robustness of the GP to evolve its own model structure with relevant parameters is illustrated by applying GP to characterize the actual-evapotranspiration process. The results from this research indicate that self-organization in learning, both in terms of self-organizing networks and self-organizing algorithms, could be adopted to promote transparency in data-driven models.In pursuit of improving the reliability of the data-driven models, different methods for incorporating uncertainty estimates as part of the data-driven model building exercise is evaluated in this research. The local-scale models are shown to be more reliable than the global-scale models in characterizing the saturated hydraulic conductivity of soils. In addition, in this research, the importance of model structure uncertainty in geophysical modeling is emphasized by developing a framework to account for the model structure uncertainty in geophysical modeling. The contribution of the model structure uncertainty to the predictive uncertainty of the model is shown to be larger than the uncertainty associated with the model parameters. Also it has been demonstrated that increasing the model complexity may lead to a better fit of the function, but at the cost of an increasing level of uncertainty. It is recommended that the effect of model structure uncertainty should be considered for developing reliable hydrological models
    corecore