798 research outputs found

    Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas

    Get PDF
    Accurate and fast models are indispensable in contemporary antenna design. In this paper, we describe the low-cost antenna modeling methodology involving variable-fidelity electromagnetic (EM) simulations and co-Kriging. Our approach exploits sparsely sampled accurate (high-fidelity) EM data as well as densely sampled coarse-discretization (low-fidelity) EM simulations that are accommodated into one model using the co-Kriging technique. By using coarse-discretization simulations, the computational cost of creating the antenna model is greatly reduced compared to conventional approaches, where high-fidelity simulations are directly used to set up the model. At the same time, the modeling accuracy is not compromised. The proposed technique is demonstrated using three examples of antenna structures. Comparisons with conventional modeling based on high-fidelity data approximation, as well as applications for antenna design, are also discussed

    Multi-objective design of antenna structures using variable-fidelity EM simulations and co-kriging

    Get PDF
    A methodology for low-cost multi-objective design of antenna structures is proposed. To reduce the computational effort of the design process the initial Pareto front is obtained by optimizing the response surface approximation (RSA) model obtained from low-fidelity EM simulations of the antenna structure of interest. The front is further refined by iterative incorporation of a limited number of high-fidelity training points into the RSA surrogate using co-kriging. Our considerations are illustrated using two examples of antenna structure

    Efficient simulation-driven design optimization of antennas using co-kriging

    Get PDF
    We present an efficient technique for design optimization of antenna structures. Our approach exploits coarse-discretization electromagnetic (EM) simulations of the antenna of interest that are used to create its fast initial model (a surrogate) through kriging. During the design process, the predictions obtained by optimizing the surrogate are verified using high-fidelity EM simulations, and this high-fidelity data is used to enhance the surrogate through co-kriging technique that accommodates all EM simulation data into one surrogate model. The co-kriging-based optimization algorithm is simple, elegant and is capable of yielding a satisfactory design at a low cost equivalent to a few high-fidelity EM simulations of the antenna structure. To our knowledge, this is a first application of co-kriging to antenna design. An application example is provided
    corecore