610 research outputs found

    Servant Leadership in Higher Education

    Get PDF
    The purpose of this presentation is to orient the audience to the tenets of servant leadership and provide examples of how servant leadership can be applied in higher education

    Taking On Unexpected Leadership Roles

    Get PDF
    Leaders are occasionally asked to take on new roles with very little notice. This session will present new chairs with some concrete tips to help individuals taking on unexpected leadership roles survive and eventually thrive in the position

    The Effect of a Dialogic Reading Intervention on the Emergent Literacy Skills of Preschool Students

    Get PDF
    Seventeen children enrolled in a preschool for four-year-old children were separated into a dialogue reading intervention group and a control group. Dialogic reading involves making children active participants in the adult-child storybook reading process. Adults prompt children to talk about the book by asking questions. The intervention group received dialogic reading in small groups for six weeks. It was found that there was no significant improvement in emergent literacy skill in the intervention group as measured by the Developing Skills Checklist, but the children in the intervention group were actively engaged in the reading process a larger percentage of the time as compared to the children in the control group

    Fracture temperature and flaw growth in nitronic 40 at cryogenic temperatures

    Get PDF
    The fracture resistance and fatigue response of Armco Nitronic 40 austenitic stainless steel were evaluated under cryogenic conditions. Tensile, fracture toughness and fatigue crack growth properties were measured at -275 F. The tensile yield strength was approximately 120 ksi and the fracture toughness was estimated to be 350 ksi-in /2 on the basis of fracture toughness measurements. Testing was conducted to evaluate the behavior of a simulated section of the wing of the Pathfinder 1 model subject to a load and temperature history typical of that for testing in the National Transonic Facility. The wing section model incorporated a proposed brazing technique for pressure-transducer attachment. The simulated wing section performed satisfactorily at stress levels of nearly 60 percent of the material yield strength. The brazing technique proved to be an effective method of transducer attachment under conditions of high stress levels and large temperature excursions

    Manufacturing requirements

    Get PDF
    In recent years, natural laminar flow (NLF) has been proven to be achievable on modern smooth airframe surfaces over a range of cruise flight conditions representative of most current business and commuter aircraft. Published waviness and boundary layer transition measurements on several modern metal and composite airframes have demonstrated the fact that achievable surface waviness is readily compatible with laminar flow requirements. Currently, the principal challenge to the manufacture of NLF-compatible surfaces is two-dimensional roughness in the form of steps and gaps at structural joints. Results of recent NASA investigations on manufacturing tolerances for NLF surfaces, including results of a flight experiment are given. Based on recent research, recommendations are given for conservative manufacturing tolerances for waviness and shaped steps

    Sediment Content in Antarctic Iceberg Fragments Sufficient to Sink the Ice

    Get PDF
    Iceberg fragments recovered from the sea floor near Swift Glacier, Antarctica, contained sufficient sediment to sink the ice. Sediment concentrations in the samples would have caused them to settle at 0.13 to 0.35 m/s through the water column. Impact with the sea floor would significantly turbate soft sediments. Unlike sediment dumped from icebergs, the stratigraphy of the frozen sediments created by glacial processes may be preserved in the marine sedimentary record after melting of the ice. Negatively buoyant berg fragments may be common in polar regions, and when driven by currents may scour the sea floor up and down slopes unlike floating ice.Des fragments d’icebergs recueillis sur le fond océanique, près du glacier de Swift, en Antarctique, contenaient suffisamment de sédiments pour couler à une vitesse de 0,13 à 0,35 m/s. La collision de tels fragments avec le plancher marin entraînerait un brassage important des sédiments mous. Au contraire de celle de sédiments délestés par les icebergs, la stratigraphie de ces sédiments gelés résultant de processus glaciaires peut être préservée au sein des dépôts marins après la fonte des fragments de glace dans lesquels ils sont emprisonnés. Ces fragments, dont la densité est supérieure à celle de l’eau, pourraient être communs dans les régions polaires et causer, sous l’action des courants, un labourage ascendant et descendant des pentes des fonds marins, contrairement aux glaces flottantes

    Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    Get PDF
    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations

    Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks

    Get PDF
    Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT

    Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    Get PDF
    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations
    • …
    corecore