657 research outputs found

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Writing in Britain and Ireland, c. 400 to c. 800

    Get PDF
    No abstract available

    Long-term effects of flooding on mortality in England and Wales, 1994-2005: controlled interrupted time-series analysis

    Get PDF
    BACKGROUND: Limited evidence suggests that being flooded may increase mortality and morbidity among affected householders not just at the time of the flood but for months afterwards. The objective of this study is to explore the methods for quantifying such long-term health effects of flooding by analysis of routine mortality registrations in England and Wales. METHODS: Mortality data, geo-referenced by postcode of residence, were linked to a national database of flood events for 1994 to 2005. The ratio of mortality in the post-flood year to that in the pre-flood year within flooded postcodes was compared with that in non-flooded boundary areas (within 5 km of a flood). Further analyses compared the observed number of flood-area deaths in the year after flooding with the number expected from analysis of mortality trends stratified by region, age-group, sex, deprivation group and urban-rural status. RESULTS: Among the 319 recorded floods, there were 771 deaths in the year before flooding and 693 deaths in the year after (post-/pre-flood ratio of 0.90, 95% CI 0.82, 1.00). This ratio did not vary substantially by age, sex, population density or deprivation. A similar post-flood 'deficit' of deaths was suggested by the analyses based on observed/expected deaths. CONCLUSIONS: The observed post-flood 'deficit' of deaths is counter-intuitive and difficult to interpret because of the possible influence of population displacement caused by flooding. The bias that might arise from such displacement remains unquantified but has important implications for future studies that use place of residence as a marker of exposure

    "Predictability of body mass index for diabetes: Affected by the presence of metabolic syndrome?"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) and body mass index (BMI, kg.m<sup>-2</sup>) are established independent risk factors in the development of diabetes; we prospectively examined their relative contributions and joint relationship with incident diabetes in a Middle Eastern cohort.</p> <p>Method</p> <p>participants of the ongoing Tehran lipid and glucose study are followed on a triennial basis. Among non-diabetic participants aged≥ 20 years at baseline (8,121) those with at least one follow-up examination (5,250) were included for the current study. Multivariate logistic regression models were used to estimate sex-specific adjusted odd ratios (ORs) and 95% confidence intervals (CIs) of baseline BMI-MetS categories (normal weight without MetS as reference group) for incident diabetes among 2186 men and 3064 women, aged ≥ 20 years, free of diabetes at baseline.</p> <p>Result</p> <p>During follow up (median 6.5 years); there were 369 incident diabetes (147 in men). In women without MetS, the multivariate adjusted ORs (95% CIs) for overweight (BMI 25-30 kg/m2) and obese (BMI≥30) participants were 2.3 (1.2-4.3) and 2.2 (1.0-4.7), respectively. The corresponding ORs for men without MetS were 1.6 (0.9-2.9) and 3.6 (1.5-8.4) respectively. As compared to the normal-weight/without MetS, normal-weight women and men with MetS, had a multivariate-adjusted ORs for incident diabetes of 8.8 (3.7-21.2) and 3.1 (1.3-7.0), respectively. The corresponding ORs for overweight and obese women with MetS reached to 7.7 (4.0-14.9) and 12.6 (6.9-23.2) and for men reached to 3.4(2.0-5.8) and 5.7(3.9-9.9), respectively.</p> <p>Conclusion</p> <p>This study highlights the importance of screening for MetS in normal weight individuals. Obesity increases diabetes risk in the absence of MetS, underscores the need for more stringent criteria to define healthy metabolic state among obese individuals. Weight reduction measures, thus, should be encouraged in conjunction with achieving metabolic targets not addressed by current definition of MetS, both in every day encounter and public health setting.</p
    corecore