182 research outputs found

    Accounting Problems Under the Excess Profits Tax

    Get PDF
    DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV- 1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8(+) T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.Funding Agencies|Research Council of Norway; Odd Fellow</p

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Precision measurement of the B0s-B¯0s oscillation frequency with the decay B0s → D−sπ+

    Get PDF
    A key ingredient to searches for physics beyond the Standard Model in B0s mixing phenomena is the measurement of the B0s– Bs0{{\overline{ {\mathrm {B}}}{}}^0_{\mathrm { s}}} oscillation frequency, which is equivalent to the mass difference Δms of the B0s mass eigenstates. Using the world's largest B0s meson sample accumulated in a dataset, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment at the CERN LHC in 2011, a measurement of Δms is presented. A total of about 34 000 B0s → D−sπ+ signal decays are reconstructed, with an average decay time resolution of 44 fs. The oscillation frequency is measured to be Δms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1, which is the most precise measurement to date

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Nuclear Localization of CXCR4 Determines Prognosis for Colorectal Cancer Patients

    Get PDF
    Chemokines and their receptors are implicated in formation of colorectal cancer metastases. Especially CXCR4 is an important factor, determining migration, invasiveness, metastasis and proliferation of colorectal cancer cells. Object of this study was to determine expression of CXCR4 in tumor tissue of colorectal cancer patients and associate CXCR4 expression levels to clinicopathological parameters. Levels of CXCR4 expression of a random cohort of patients, who underwent primary curative resection of a colorectal carcinoma, were retrospectively determined by quantitative real-time RT-PCR and semi-quantitative analyses of immunohistochemical stained paraffin sections. Expression levels were associated to clinicopathological parameters. Using RT-PCR we found that a high expression of CXCR4 in the primary tumor was an independent prognostic factor for a poor disease free survival (p = 0.03, HR: 2.0, CI = 1.1–3.7). Immunohistochemical staining showed that nuclear distribution of CXCR4 in the tumor cells was inversely associated with disease free and overall survival (p = 0.04, HR: 2.6, CI = 1.0–6.2), while expression in the cytoplasm was not associated with prognosis. In conclusion, our study showed that a high expression of nuclear localized CXCR4 in tumor cells is an independent predictor for poor survival for colorectal cancer patients

    Morpholino-Mediated Increase in Soluble Flt-1 Expression Results in Decreased Ocular and Tumor Neovascularization

    Get PDF
    BACKGROUND: Angiogenesis is a key process in several ocular disorders and cancers. Soluble Flt-1 is an alternatively spliced form of the Flt-1 gene that retains the ligand-binding domain, but lacks the membrane-spanning and intracellular kinase domains of the full-length membrane bound Flt-1 (mbFlt-1) protein. Thus, sFlt-1 is an endogenous inhibitor of VEGF-A mediated angiogenesis. Synthetic mopholino oligomers directed against splice site targets can modulate splice variant expression. We hypothesize that morpholino-induced upregulation of sFlt-1 will suppress angiogenesis in clinically relevant models of macular degeneration and breast cancer. METHODS AND FINDINGS: In vivo morpholino constructs were designed to target murine exon/intron 13 junction of the Flt-1 transcript denoted VEGFR1_MOe13; standard nonspecific morpholino was used as control. After nucleofection of endothelial and breast adenocarcinoma cell lines, total RNA was extracted and real-time RT-PCR performed for sFlt-1 and mbFlt-1. Intravitreal injections of VEGFR1_MOe13 or control were done in a model of laser-induced choroidal neovascularization and intratumoral injections were performed in MBA-MD-231 xenografts in nude mice. VEGFR1_MOe13 elevated sFlt-1 mRNA expression and suppressed mbFlt-1 mRNA expression in vitro in multiple cellular backgrounds (p<0.001). VEGFR1_MOe13 also elevated sFlt/mbFlt-1 ratio in vivo after laser choroidal injury 5.5 fold (p<0.001) and suppressed laser-induced CNV by 50% (p = 0.0179). This latter effect was reversed by RNAi of sFlt-1, confirming specificity of morpholino activity through up-regulation of sFlt-1. In the xenograft model, VEGFR1_MOe13 regressed tumor volume by 88.9%, increased sFlt-1 mRNA expression, and reduced vascular density by 50% relative to control morpholino treatment (p<0.05). CONCLUSIONS: Morpholino oligomers targeting the VEGFR1 mRNA exon/intron 13 junction promote production of soluble FLT-1 over membrane bound FLT-1, resulting in suppression of lesional volume in laser induced CNV and breast adenocarcinoma. Thus, morpholino manipulation of alternative splicing offers translational potential for therapy of angiogenic disorders

    Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer

    Get PDF
    Small cell lung cancer (SCLC) is an aggressive, rapidly metastasising tumour. Previously, we demonstrated the influence of CXCL12–CXCR4 interaction on processes involved in metastasis and chemoresistance in SCLC. We show here that STAT3 is expressed in both primary SCLC tumour tissues and SCLC cell lines. We investigated the function of STAT3 upon CXCL12 stimulation in SCLC cell lines. Small cell lung cancer cell lines present constitutive phosphorylation of STAT3, and in the reference cell lines NCI-H69 and NCI-H82 constitutive phosphorylation was further increased by CXCL12 stimulation. Further investigating this signalling cascade, we showed that it involves interactions between CXCR4 and JAK2 in both cell lines. However CXCL12-induced adhesion to VCAM-1 could be completely inhibited by the JAK2 inhibitor AG490 only in NCI-H82. Furthermore, CXCR4 antagonist but not AG490 inhibited cell adhesion whereas both antagonisms were shown to inhibit growth of the cells in soft agar, indicating the central involvement of this signalling in anchorage-independent growth of SCLC cells. Most interestingly, while using primary tumour material, we observed that in contrast to non-small-cell lung cancer samples from primary tumour tissues, all analysed samples from SCLC were strongly positive for tyrosine-phosphorylated STAT3. Taken together, these data indicate that STAT3 is constitutively phosphorylated in SCLC and is important in SCLC growth and spreading thus presenting an interesting target for therapy
    corecore