11 research outputs found

    Treatment of advanced, recurrent, resistant to previous treatments basal and squamous cell skin carcinomas with a synergistic formulation of interferons. Open, prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aggressive non-melanoma skin cancer (deeply infiltrating, recurrent, and morphea form lesions) are therapeutically challenging because they require considerable tissue loss and may demand radical disfiguring surgery. Interferons (IFN) may provide a non-surgical approach to the management of these tumors. The aim of this work was to evaluate the effect of a formulation containing IFNs-α and -γ in synergistic proportions on patients with recurrent, advanced basal cell (BCC) or squamous cell skin carcinomas (SCSC).</p> <p>Methods</p> <p>Patients with extensive, recurrent, resistant to other procedures BCC or SCSC received the IFN formulation peri- and intralesionally, three times per week for 3 weeks. They had been previously treated with surgery and/or radiotherapy or chemotherapy. Thirteen weeks after the end of treatment, the original lesion sites were examined for histological evidence of remaining tumor.</p> <p>Results</p> <p>Sixteen elder (median 70 years-old) patients were included. They beared 12 BCC and 4 SCSC ranging from 1.5 to 12.5 cm in the longest dimension. At the end of treatment 47% CR (complete tumor elimination), 40% PR (>30% tumor reduction), and 13% stable disease were obtained. None of the patients relapsed during the treatment period. The median duration of the response was 38 months. Only one patient with complete response had relapsed until today. Principal adverse reactions were influenza-like symptoms well known to occur with interferon therapy, which were well tolerated.</p> <p>Conclusion</p> <p>The peri- and intralesional combination of IFNs-α and -γ was safe and showed effect for the treatment of advanced, recurrent and resistant to previous treatments of BCC and SCSC in elder patients. This is the first report of such treatment in patients with advance non-melanoma skin cancer. The encouraging result justifies further confirmatory trials.</p> <p>Trial registration</p> <p>Current Controlled Trials RPCEC00000052.</p

    Quantum Dots for Live Cell and In Vivo Imaging

    Get PDF
    In the past few decades, technology has made immeasurable strides to enable visualization, identification, and quantitation in biological systems. Many of these technological advancements are occurring on the nanometer scale, where multiple scientific disciplines are combining to create new materials with enhanced properties. The integration of inorganic synthetic methods with a size reduction to the nano-scale has lead to the creation of a new class of optical reporters, called quantum dots. These semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes and fluorescent proteins, and are brighter and more stable against photobleaching than standard fluorescent indicators. Quantum dots have tunable optical properties that have proved useful in a wide range of applications from multiplexed analysis such as DNA detection and cell sorting and tracking, to most recently demonstrating promise for in vivo imaging and diagnostics. This review provides an in-depth discussion of past, present, and future trends in quantum dot use with an emphasis on in vivo imaging and its related applications

    References

    No full text

    ViskositÀt

    No full text
    corecore