10,187 research outputs found

    Electron-Hole Asymmetry in Single-Walled Carbon Nanotubes Probed by Direct Observation of Transverse Quasi-Dark Excitons

    Full text link
    We studied the asymmetry between valence and conduction bands in single-walled carbon nanotubes (SWNTs) through the direct observation of spin-singlet transverse dark excitons using polarized photoluminescence excitation spectroscopy. The intrinsic electron-hole (e-h) asymmetry lifts the degeneracy of the transverse exciton wavefunctions at two equivalent K and K' valleys in momentum space, which gives finite oscillator strength to transverse dark exciton states. Chirality-dependent spectral weight transfer to transverse dark states was clearly observed, indicating that the degree of the e-h asymmetry depends on the specific nanotube structure. Based on comparison between theoretical and experimental results, we evaluated the band asymmetry parameters in graphene and various carbon nanotube structures.Comment: 11 pages, 4 figure

    Photonic engineering of hybrid metal-organic chromophores

    Full text link
    We experimentally demonstrate control of the absorption and emission properties of individual emitters by photonic antennas in suspension. The method results in a new class of water-soluble chromophores with unprecedented photophysical properties, such as short lifetime, low quantum yield but high brightness

    Emerging Applications of Fluorescence Spectroscopy to Cellular Imaging: Lifetime Imaging, Metal-Ligand Probes, Multi-Photon Excitation and Light Quenching

    Get PDF
    Advances in time-resolved fluorescence spectroscopy can be applied to cellular imaging. Fluorescence lifetime imaging microscopy (FLIM) creates image contrast based on the decay time of sensing probes at each point in a two-dimensional image. FLIM allows imaging of Ca2+ and other ions without the need for wavelength-ratiometric probes. Ca2+ imaging can be performed by FLIM with visible wavelength excitation. Instrumentation for FLIM is potentially simple enough to be present in most research laboratories. Applications of fluorescence are often limited by the lack of suitable fluorophores. New, highly photostable probes allow off-gating of the prompt autofluorescence, and measurement of rotational motion of large macromolecules. These luminescent metal-ligand complexes will become widely utilized. Modem pulse lasers allow new experiments based on non-linear phenomena. With picosecond and femtosecond lasers fluorophores can be excited by simultaneous absorption of two or three photons. Hence, Ca2+ probes, membrane probes, and even intrinsic protein fluorescence can be excited with red or near infrared wavelengths, without ultraviolet lasers or optics. Finally, light itself can be used to control the excited state population. By using light pulses whose wavelength overlaps the emission spectrum of a fluorophore one can modify the excited state population and orientation. This use of non-absorbed light to modify emission can have wide reaching applications in cellular imaging

    Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    Get PDF
    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum-optics in photonic band-gap crystals and for applications wherein directional emission and total emission power are controlled.Comment: 10 pages, 10 figures, corrected pdf, inserted new referenc

    Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles

    Get PDF
    The effects of metal-enhanced fluorescence (MEF) have been measured for two dyes commonly used in DNA microarrays, Cy3 and Cy5. Silver island films (SIFs) grown on glass microscope slides were used as substrates for MEF DNA arrays. We examined MEF by spotting biotinylated, singly-labeled 23 bp DNAs onto avidin-coated SIF substrates. The fluorescence enhancement was found to be dependent on the DNA spotting concentration: below ∼12.5 μM, MEF increased linearly, and at higher concentrations MEF remained at a constant maximum of 28-fold for Cy5 and 4-fold for Cy3, compared to avidin-coated glass substrates. Hybridization of singly-labeled oligonucleotides to arrayed single-stranded probes showed lower maximal MEF factors of 10-fold for Cy5 and 2.5-fold for Cy3, because of the smaller amount of immobilized fluorophores as a result of reduced surface hybridization efficiencies. We discuss how MEF can be used to increase the sensitivity of DNA arrays, especially for far red emitting fluorophores like Cy5, without significantly altering current microarray protocols

    Time-gated transillumination of biological tissues and tissuelike phantoms

    Get PDF
    The applicability and limits of time-resolved transillumination to determine the internal details of biological tissues are investigated by phantom experiments. By means of line scans across a sharp edge, the spatial resolution (Ax) and its dependence on the time-gate width (At) can be determined. Additionally, measurements of completely absorbing bead pairs embedded in a turbid medium demonstrate the physical resolution in a more realistic case. The benefit of time resolution is especially high for a turbid medium with a comparatively small reduced scattering coefficient of approximately pL,' = 0.12 mm-1. Investigations with partially absorbing beads and filled plastic tubes demonstrate the high sensitivity of time-resolving techniques with respect to spatial variations in scattering or absorption coefficients that are due to the embedded disturber. In particular, it is shown that time gating is sensitive to variations in scattering coefficients. Key words: Time-resolved transillumination, turbid media, light scattering, streak camera

    Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles

    Get PDF
    We present a microscopic model for surface-enhanced Raman scattering (SERS) from molecules adsorbed on small noble-metal nanoparticles. In the absence of direct overlap of molecular orbitals and electronic states in the metal, the main enhancement source is the strong electric field of the surface plasmon resonance in a nanoparticle acting on a molecule near the surface. In small particles, the electromagnetic enhancement is strongly modified by quantum-size effects. We show that, in nanometer-sized particles, SERS magnitude is determined by a competition between several quantum-size effects such as the Landau damping of surface plasmon resonance and reduced screening near the nanoparticle surface. Using time-dependent local density approximation, we calculate spatial distribution of local fields near the surface and enhancement factor for different nanoparticles sizes.Comment: 8 pages, 6 figures. Considerably extended final versio

    Quantitative photoluminescence of broad band absorbing melanins: A procedure to correct for inner filter and re-absorption effects

    Full text link
    We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant.Comment: 20 pages, 13 figure

    Extending the Propagation Distance of a Silver Nanowire Plasmonic Waveguide with a Dielectric Multilayer Substrate

    Full text link
    Chemical synthesized silver nanowires have been proved to be the efficient architecture for Plasmonic waveguides, but the high propagation loss prevents their widely applications. Here, we demonstrate that the propagation distance of the plasmons along the Ag NW can be extended if the Ag NW was placed on a dielectric multilayer substrate containing a photonic band gap, but not placed on a commonly used glass substrate. The propagation distance at 630 nm wavelength can reach 16 um even that the Ag NW is as thin as 90 nm in diameter. Experimental and simulation results further show that the polarization of this propagating plasmon mode was nearly parallel to the surface of the dielectric multilayer, so it was excited by a transverse-electric polarized Bloch surface wave propagating along a polymer nanowire with diameter at only about 170 nm on the same dielectric multilayer. Numerical simulations were also carried out and consistent with the experiment results. Our work provides a platform to extend the propagation distance of plasmonic waveguide and also for the integration between photonic and plasmonic waveguides on the nanometre scale.Comment: 5 pages, 4 figure
    • …
    corecore