273 research outputs found

    Enhanced surface plasmon polariton propagation induced by active dielectrics

    Get PDF
    We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL multiphysics software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a root in the imaginary part of the propagation constant leading to infinite propagation of the surface plasmon. The computational approaches analyzed in this work can be used to define and tune the optimal conditions for surface plasmon polariton amplification and propagation

    Manipulating polarized light with a planar slab of Black Phosphorus

    Get PDF
    Wave polarization contains valuable information for electromagnetic signal processing and the ability to manipulate it can be extremely useful in photonic devices. In this work, we propose designs comprised of one of the emerging and interesting two-dimensional media: Black Phosphorus. Due to substantial in-plane anisotropy, a single slab of Black Phosphorus can be very efficient for manipulating the polarization state of electromagnetic waves. We investigate Black Phosphorus slabs that filter the fields along one direction, or polarization axis rotation, or convert linear polarization to circular. These slabs can be employed as components in numerous mid-IR integrated devices

    Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials

    Get PDF
    The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host can give rise to a plasmonic Dirac point that emulates epsilon-near-zero (ENZ) behavior. This theoretical result is extremely sensitive to structural features like periodicity of the dielectricmedium and thickness imperfections.We propose that such a device can actually be realized by using graphene as the two-dimensional metal and materials like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with linear, elliptical, and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffractio

    Emergence and dynamical properties of stochastic branching in the electronic flows of disordered Dirac solids

    Full text link
    Graphene as well as more generally Dirac solids constitute two dimensional materials where the electronic flow is ultra relativistic. When a Dirac solid is deposited on a different substrate surface with roughness, a local random potential develops through an inhomogeneous charge impurity distribution. This external potential affects profoundly the charge flow and induces a chaotic pattern of current branches that develops through focusing and defocusing effects produced by the randomness of the surface. An additional bias voltage may be used to tune the branching pattern of the charge carrier currents. We employ analytical and numerical techniques in order to investigate the onset and the statistical properties of carrier branches in Dirac solids. We find a specific scaling-type relationship that connects the physical scale for the occurrence of branches with the characteristic medium properties, such as disorder and bias field. We use numerics to test and verify the theoretical prediction as well as a perturbative approach that gives a clear indication of the regime of validity of the approach. This work is relevant to device applications and may be tested experimentally

    Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials

    Get PDF
    The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host can give rise to a plasmonic Dirac point that emulates epsilon-near-zero (ENZ) behavior. This theoretical result is extremely sensitive to structural features like periodicity of the dielectricmedium and thickness imperfections.We propose that such a device can actually be realized by using graphene as the two-dimensional metal and materials like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with linear, elliptical, and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffractio
    corecore