168 research outputs found
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA
Differential inclusive jet cross sections in neutral current deep inelastic
ep scattering have been measured with the ZEUS detector. Three phase-space
regions have been selected in order to study parton dynamics where the effects
of BFKL evolution might be present. The measurements have been compared to the
predictions of leading-logarithm parton shower Monte Carlo models and
fixed-order perturbative QCD calculations. In the forward region, QCD
calculations at order alpha_s^1 underestimate the data up to an order of
magnitude at low x. An improved description of the data in this region is
obtained by including QCD corrections at order alpha_s^2, which account for the
lowest-order t-channel gluon-exchange diagrams, highlighting the importance of
such terms in parton dynamics at low x.Comment: 25 pages, 4 figure
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP.
Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2
mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
Measurement of dijet photoproduction for events with a leading neutron at HERA
Differential cross sections for dijet photoproduction and this process in
association with a leading neutron, e+ + p -> e+ + jet + jet + X (+ n), have
been measured with the ZEUS detector at HERA using an integrated luminosity of
40 pb-1. The fraction of dijet events with a leading neutron was studied as a
function of different jet and event variables. Single- and double-differential
cross sections are presented as a function of the longitudinal fraction of the
proton momentum carried by the leading neutron, xL, and of its transverse
momentum squared, pT^2. The dijet data are compared to inclusive DIS and
photoproduction results; they are all consistent with a simple pion-exchange
model. The neutron yield as a function of xL was found to depend only on the
fraction of the proton beam energy going into the forward region, independent
of the hard process. No firm conclusion can be drawn on the presence of
rescattering effects.Comment: 40 pages, 18 figure
Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode
We report a measurement of the ttbar production cross section using the
CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311
pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events
selected with six or more hadronic jets with additional kinematic requirements.
At least one of these jets must be identified as a b-quark jet by the
reconstruction of a secondary vertex. The cross section is measured to be
sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is
consistent with the standard model prediction.Comment: By CDF collaboratio
Search for chargino-neutralino production in ppbar collisions at sqrt(s) = 1.96 TeV
We present the results of a search for associated production of the chargino
and neutralino supersymmetric particles using up to 1.1 fb-1 of integrated
luminosity collected by the CDF II experiment at the Tevatron ppbar collider at
a center-of-mass energy of 1.96 TeV. The search is conducted by analyzing
events with a large transverse momentum imbalance and either three charged
leptons or two charged leptons of the same electric charge. The numbers of
observed events are found to be consistent with standard model expectations.
Upper limits on the production cross section are derived in different
theoretical models. In one of these models a lower limit on the mass of the
chargino is set at 129 GeV/c^2 at the 95% confidence level.Comment: To be submitted to Phys.Rev.Let
Measurement of the W+W- Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Dilepton Events
We present a measurement of the W+W- production cross section using 184/pb of
ppbar collisions at a center-of-mass energy of 1.96 TeV collected with the
Collider Detector at Fermilab. Using the dilepton decay channel W+W- ->
l+l-vvbar, where the charged leptons can be either electrons or muons, we find
17 candidate events compared to an expected background of 5.0+2.2-0.8 events.
The resulting W+W- production cross section measurement of sigma(ppbar -> W+W-)
= 14.6 +5.8 -5.1 (stat) +1.8 -3.0 (syst) +-0.9 (lum) pb agrees well with the
Standard Model expectation.Comment: 8 pages, 2 figures, 2 tables. To be submitted to Physical Review
Letter
The design, implementation, and performance of the LZ calibration systems
LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments
- …