17 research outputs found

    Robust group sequential designs for trials with survival endpoints and delayed response

    Get PDF
    Randomized clinical trials in oncology typically utilize time-to-event endpoints such as progression-free survival or overall survival as their primary efficacy endpoints, and the most commonly used statistical test to analyze these endpoints is the log-rank test. The power of the log-rank test depends on the behavior of the hazard ratio of the treatment arm to the control arm. Under the assumption of proportional hazards, the log-rank test is asymptotically fully efficient. However, this proportionality assumption does not hold true if there is a delayed treatment effect. Cancer immunology has evolved over time and several cancer vaccines are available in the market for treating existing cancers. This includes sipuleucel-T for metastatic hormone-refractory prostate cancer, nivolumab for metastatic melanoma, and pembrolizumab for advanced nonsmall-cell lung cancer. As cancer vaccines require some time to elicit an immune response, a delayed treatment effect is observed, resulting in a violation of the proportional hazards assumption. Thus, the traditional log-rank test may not be optimal for testing immuno-oncology drugs in randomized clinical trials. Moreover, the new immuno-oncology compounds have been shown to be very effective in prolonging overall survival. Therefore, it is desirable to implement a group sequential design with the possibility of early stopping for overwhelming efficacy. In this paper, we investigate the max-combo test, which utilizes the maximum of two weighted log-rank statistics, as a robust alternative to the log-rank test. The new test is implemented for two-stage designs with possible early stopping at the interim analysis time point. Two classes of weights are investigated for the max-combo test: the Fleming and Harrington (1981) (Formula presented.) weights and the Magirr and Burman (2019) modest (Formula presented.) weights.</p

    Preconception maternal iodine status is associated with IQ but not with measures of executive function in childhood

    Get PDF
    Background: adverse effects of severe maternal iodine deficiency in pregnancy on fetal brain development are wellestablished, but the effects of milder deficiency are uncertain. Most studies examine iodine status in pregnancy; less is known about iodine nutrition before conception. Objective: we examined relations between maternal preconception iodine status and offspring cognitive function, within a prospective mother-offspring cohort. Methods: maternal iodine status was assessed through the use of the ratio of iodine:creatinine concentrations (I/Cr) in spot urine samples [median (IQR) period before conception 3.3 y (2.2-4.7 y)]. Childhood cognitive function was assessed at age 6-7 y. Full-scale IQ was assessed via the Wechsler Abbreviated Scale of Intelligence, and executive function through the use of tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Analyses (n = 654 mother-child dyads) were adjusted for potential confounders including maternal intelligence, education, and breastfeeding duration. Results: the median (IQR) urinary iodine concentration was 108.4 μg/L (62.2-167.8 μg/L) and the I/Cr ratio 114 μg/g (76- 164 μg/g). The preconception I/Cr ratio was positively associated with child IQ, before and after adjustment for potential confounding influences [β = 0.13 (95% CI: 0.04, 0.21)/SD, P = 0.003]. 8.9% of women had a preconception urinary I/Cr ratio &lt; 50 μg/g; compared with those with an I/Cr ratio ≥150 μg/g, the IQ of their offspring was 0.49 (95% CI: 0.79, 0.18) SD lower. There were no associations with the executive function outcomes assessed via CANTAB, before or after adjustment for confounders. Conclusions: the positive association between iodine status before conception and child IQ provides some support for demonstrated links between low maternal iodine status in pregnancy and poorer cognitive function reported in other studies. However, given the negative effects on school performance previously observed in children born to iodine-deficient mothers, the lack of associations with measures of executive function in the present study was unexpected. Further data are needed to establish the public health importance of low preconception iodine status.</p

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe

    A high resolution atlas of gene expression in the domestic sheep (Ovis aries)

    Get PDF
    Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Das Lagemanagement des Robert Koch-Instituts während der COVID-19-Pandemie und der Austausch zwischen Bund und Ländern

    No full text
    The Robert Koch Institute (RKI) plays a central role in Germany in the management of health hazards of biological origin. The RKI's crisis management aims to contribute to protecting the health of the population in Germany in significant epidemic situations and to maintain the RKI's working ability over a long period of time even under high load. This article illustrates the crisis management of the RKI in general as well as during the COVID-19 pandemic. The generic RKI crisis management structures and the setup of the RKI emergency operations centre (EOC), their operationalisation in the context of the COVID-19 pandemic and the resulting challenges as of 31 October 2020 are described in this paper. The exchange between the federal and state governments during the pandemic is also described.The COVID-19 pandemic has led to extraordinary circumstances. During the epidemic situation, good communication and coordination has been essential, both within the RKI and with other federal or state authorities and expert groups. Under great pressure, the RKI produces and regularly updates recommendations, statements and assessments on various topics. To provide operational support for all COVID-19 related activities, an EOC was activated at the RKI. During the COVID-19 pandemic, there are various challenges regarding personnel and structures. It became apparent that good preparation (e.g. existing task descriptions and premises) has an important positive impact on crisis management

    SCORE2 risk prediction algorithms : new models to estimate 10-year risk of cardiovascular disease in Europe

    No full text
    Aims The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe. Methods and results We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low- risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries. Conclusion SCORE2-a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations-enhances the identification of individuals at higher risk of developing CVD across Europe
    corecore