

Digital access to libraries

"Global variations in diabetes mellitus based on fasting glucose and haemoglobin A1c"

NCD Risk Factor Collaboration (NCD-RisC) ; Jadoul, Michel

CITE THIS VERSION

NCD Risk Factor Collaboration (NCD-RisC) ; Jadoul, Michel. *Global variations in diabetes mellitus based on fasting glucose and haemoglobin A1c.* In: *Nature Medicine*, (2023) <u>http://hdl.handle.net/2078.1/277326</u>

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanant des membres de l'UCLouvain. Toute utilisation de ce document à des fins lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur liés à ce document, principalement le droit à l'intégrité de l'œuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page <u>Copyright policy</u> DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is stricly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at <u>Copyright policy</u>

Title: Global variations in diabetes mellitus based on fasting glucose and haemoglobin A1c

Authors: NCD Risk Factor Collaboration (NCD-RisC)*

* A list of authors and their affiliations appears at the end of the paper.

Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.

Introduction

Diabetes mellitus is associated with debilitating complications like amputation, vision loss and renal failure, and with increased risk of cardiovascular events, dementia, some cancers, and infections like tuberculosis and severe COVID-19¹⁻⁶. The diagnostic criteria for diabetes have evolved over time to incorporate haemoglobin A1c (HbA1c), which is a measure of long-term glycaemic status and more convenient to measure for patients than is fasting glucose or the 2-hour oral glucose tolerance test (OGTT)⁷⁻¹⁰. In contemporary guidelines, any one or the combination of fasting plasma glucose (FPG), OGTT and HbA1c may be used to diagnose

diabetes¹⁰⁻¹⁴. OGTT is now rarely used in clinical practice or population surveillance because of the inconvenience related to the glucose load, 2-hour time frame and the two blood draws required for the test^{15,16}. FPG and HbA1c, which are both used in clinical practice and epidemiological research and surveillance, measure different glycaemic features, namely basal glucose level (FPG) and average glucose level in the previous 2-3 months (HbA1c)¹⁷. Therefore, individuals may have elevated levels of one or both biomarkers, and FPG and HbA1c may classify different people as having diabetes^{9,10}. Diabetes also has a long subclinical period defined by hyperglycaemia, and may remain undiagnosed without screening or other mechanisms for early identification¹⁸.

Some studies have assessed sensitivity and specificity of diabetes diagnosis using either FPG or HbA1c relative to the OGTT, or have compared diabetes prevalence based on these different glycaemic biomarkers, but most did not provide a direct comparison of HbA1c and FPG¹⁹⁻²¹. Most population-based studies on the concordance and discordance of diabetes diagnosis using FPG versus HbA1c have been conducted in a single country or region^{14,22-42}, and the only multi-country study⁴³ used data largely from high-income western countries. Therefore, there are scant data on how the concordance and discordance of FPG and HbA1c in classifying diabetes vary across regions in the world, and on the factors associated with this variation. The lack of data on the regional variation in diabetes identified based on FPG versus HbA1c means that we cannot quantify the full extent of the diabetes epidemic, and its regional variation, because diabetes prevalence is measured and reported using a single glycaemic biomarker in most population-based surveys and analyses⁴⁴⁻⁴⁶. For example, in the latest global analysis⁴⁴, only ~15% of surveys had measured both FPG and HbA1c.

We assembled a global database of population-based studies that had measured both FPG and HbA1c. Using these data, we quantified the regional variation in the extent of diabetes diagnosis.

We also quantified, among those who were previously undiagnosed and were detected as having diabetes through screening in the survey, the concordance and discordance of having FPG and HbA1c above common diagnostic thresholds (7.0 mmol/L for FPG and 6.5% for HbA1c). We refer to this group as screen-detected diabetes, which is an epidemiological definition, because many clinical guidelines recommend two measurements for diabetes diagnosis¹⁰⁻¹³. We discuss the reasons and implications of this apparent difference between clinical and epidemiological approaches in the Discussion section. We then used regression analysis to examine what individual and study level factors were associated with whether participants with screen-detected diabetes were identified by elevated FPG, elevated HbA1c or elevated levels of both. It has been shown that having elevated levels of both biomarkers has high positive predictive value for subsequent clinical diagnosis and risk of complications^{14,47}, and hence this group is similar to clinically-diagnosed diabetes.

Finally, we leveraged the global coverage of the dataset and its large sample size to develop prediction equations that estimate, for any given FPG level, the probability that a person without previously diagnosed diabetes would have HbA1c above the clinical threshold for diabetes had it been measured, and vice versa. Our purpose was to develop and validate global and generalisable predictions equations that account for both personal characteristics and regional differences. These equations serve three purposes. First, they allow more efficient use of finite diagnostic resources, by identifying some people with below- or near-threshold level for one biomarker (e.g., FPG) for measurement of another (e.g., HbA1c). Second, they allow the estimation of the probability that a person with screen-detected elevated level of one biomarker would also have elevated level of the other, as a confirmation of diabetes status^{14,47}. Finally, the prediction equations can improve diabetes surveillance by allowing estimation of prevalence of diabetes based on both FPG and HbA1c in health surveys that have measured only one of these biomarkers.

Results

Data

After exclusions (Fig. 1), we used data on 601,307 participants aged 18 years and older with information on whether they had been previously diagnosed with diabetes, of whom 364,825 participants also had measured FPG and HbA1c. The difference between the number of participants with data on previous diagnosis and with biomarker data is mostly because many studies do blood tests on a subsample of those with questionnaire data. These participants were from 117 studies whose mid-year was from 2000 to 2021 in 45 countries from seven of eight world regions (Extended Data Table 1). We had no study that measured both FPG and HbA1c from the region of Oceania, which consists of Pacific island nations. The number of studies in other regions ranged from seven in sub-Saharan Africa to 48 in the high-income western region (Table 1). The mean age of study participants was 50 years, and 56% of participants were women. Of the 117 studies with data on glycaemic variables, 113 (97%) with 351,270 participants (96% of all participants) also had data on BMI; the remaining four studies either did not collect anthropometric information or only had self-reported height and weight data.

Extent and composition of screen-detected diabetes by FPG and HbA1c levels

Across all studies, 16% of participants had diagnosed or previously-undiagnosed screen-detected diabetes. Diagnosed diabetes was calculated based on reporting a prior diagnosis and screen-detected diabetes as having FPG and/or HbA1c levels at or above the thresholds of 7.0 mmol/L and $6.5\%^{10-13}$ (Fig. 2). After age-standardisation, the total prevalence of diabetes became 12%. The age-standardised prevalence of diagnosed and screen-detected diabetes were 7% and 5%, respectively. Those without a prior diabetes diagnosis had a lower BMI than those with a prior diagnosis in every region, by an average of 2.9 kg/m² across all studies (Table 1). Among those without a prior diagnosis, participants with screen-detected diabetes (i.e., whose FPG \geq 7.0

mmol/L and HbA1c \geq 6.5%) had a mean BMI that was higher than those who did not have diabetes (i.e., whose FPG <7.0 mmol/L and HbA1c <6.5%) by an average of 2.4 kg/m².

In most regions, age-standardised diabetes prevalence was slightly lower than crude prevalence, except south Asia where the participants were on average younger than in other regions (Table 1). Regionally, the age-standardised total diabetes prevalence (i.e., the combination of diagnosed and screen-detected diabetes) ranged from ~9% in the high-income western region to ~21% in south Asia and sub-Saharan Africa. The age-standardised proportion of diabetes that was previously undiagnosed, and was detected in the screening via the survey, was highest (66%) in studies from south Asia, and lowest (<35%) in studies from the high-income western region, central and eastern Europe, and the region of central Asia, Middle East and north Africa. Two studies in sub-Saharan Africa were from Mauritius, a country that is different demographically and economically from most other countries in the region. When these studies were removed, total age-standardised diabetes prevalence declined from 21% to 13% and the proportion who were previously undiagnosed increased from 46% to 53% (Extended Data Fig. 2).

Across all studies together, 29% of participants with screen-detected diabetes had isolated elevated FPG, 37% had isolated elevated HbA1c and 34% had elevated levels of both. Regionally, there was substantial heterogeneity in the composition of screen-detected diabetes across these three groups (Fig. 2). The proportions changed little after age-standardisation. The age-standardised proportion of those with screen-detected diabetes who had elevated levels of both FPG and HbA1c ranged from 29% to 39% across regions. The remaining 61-71% of participants with screen-detected diabetes had discordant FPG and HbA1c elevations, with substantial regional heterogeneity. After age-standardisation, isolated elevated HbA1c made up 54% of participants with screen-detected diabetes in sub-Saharan Africa, and 47% in the region of central Asia, Middle East and north Africa. In these regions, isolated elevated FPG accounted

for <17% of all screen-detected diabetes. In contrast, 55% of participants with screen-detected diabetes in central and eastern Europe, and 46% in high-income western region, had isolated elevated FPG. The correlation coefficient between FPG and HbA1c among participants without prior diagnosis of diabetes ranged from 0.51 in central and eastern Europe to 0.76 in sub-Saharan Africa (Extended Data Fig. 3).

Predictors of heterogeneity in FPG and HbA1c status

Some participant and study level characteristics were predictors of whether screen-detected diabetes was manifested as elevated levels of FPG, HbA1c or both (Table 2). Among those with screen-detected diabetes, male sex was associated with a higher probability of having elevated FPG, either alone (prevalence ratio (PR) =1.10; 95% credible interval (CrI): 1.07-1.14) or together with elevated HbA1c (1.07; 1.03-1.11), and with a lower probability of having isolated elevated HbA1c (0.86; 0.83-0.89). Older age was associated with a lower probability of having elevated FPG, alone (PR=0.97 per decade of age; 0.96-0.98) or together with elevated HbA1c (PR=0.97; 0.96-0.99), and a higher probability of having isolated elevated HbA1c (1.05; 1.04-1.06). Higher BMI was associated with a higher probability of having concordant elevation of FPG and HbA1c (PR=1.07 per 5 units; 1.06-1.08) and a lower probability of having isolated elevated FPG (PR=0.92; 0.90-0.93).

At the study level, in studies that used a portable device to measure HbA1c, the composition of screen-detected diabetes was shifted towards more isolated elevated HbA1c but the estimates for this association had wide confidence intervals because the great majority of studies in our analysis had measured glucose and HbA1c in a laboratory. Neither the year of study nor the percentage of participants with diabetes who had reported prior diagnosis were associated with the composition of screen-detected diabetes.

After adjustment for participant and study characteristics, regional heterogeneity remained in the composition of screen-detected diabetes (Table 2). After adjustment for these factors, the composition of screen-detected diabetes, in terms of having elevated FPG and HbA1c in isolation or together, was statistically indistinguishable among high-income western region and central and eastern Europe. In other regions, elevated HbA1c was a more common form of screen-detected diabetes than in the high-income western region, in isolation (PR ranging 1.42-2.20 across these regions) or together with elevated FPG (PR ranging 1.31-1.52 in east and southeast Asia and the Pacific; south Asia; sub-Saharan Africa). In all regions, isolated elevated FPG was less common than in the high-income western region (PR ranging 0.24-0.51).

Prediction equations

Most of the prediction equations had acceptable performance for estimating the probability that a person without diagnosed diabetes at a specific level of one glycaemic biomarker (i.e., FPG or HbA1c) was above the clinical threshold for the other (Extended Data Table 3 and Extended Data Table 4). Specifically, the C-statistic ranged from 0.85 to 0.90 for models that used either biomarker to predict the elevated level of the other. The mean errors were between -0.18 and - 0.65 percentage points, and the mean absolute errors were between 2.32 and 3.30 percentage points. The best-performing models for predicting whether participants had HbA1c \geq 6.5% using FPG measurement included BMI and region-specific terms for FPG, referred to as Models 5 and 8 in Extended Data Table 2 and Extended Data Table 3. These two models had similar C-statistic. Model 5 had the smallest deviation and Model 8 the smallest bias. The addition of sex interaction terms did not improve model performance. The best models for predicting whether participants had FPG \geq 7.0 mmol/L using HbA1c measurement were also Models 5 and 8 (Extended Data Table 2 and Extended Data Table 4). The coefficients of these models are shown in Extended Data Table 5 and Extended Data Table 6.

In Fig. 3, the coefficients from Model 8 were used to calculate the probability that a person without a history of diabetes diagnosis, based on measurement of a single glycaemic biomarker that is below the clinical threshold, would have elevated level of the other – i.e., elevated HbA1c at a specific FPG and BMI level (Fig. 3A), or elevated FPG at a specific HbA1c and BMI level (Fig. 3B). For example, in south Asia, people aged 55 years and older, without a previous diabetes diagnosis, with obesity (BMI ≥30kg/m²), whose FPG is 6.5-6.9 mmol/L have a ~29-63% probability of having elevated HbA1c. In contrast, the probability of having elevated HbA1c remained no higher than 17% for men and women of the same age and FPG level in the high-income western region and central and eastern Europe, which means that screen-detected diabetes that is manifested as isolated elevated HbA1c is relatively rare in these two regions. For those whose HbA1c was measured, the probability of having elevated FPG was below 30% in every region except central and eastern Europe; the probability surpassed 20% only in those with high BMI and HbA1c levels.

In Fig. 4, the coefficients from Model 8 were used to calculate the probability that a person without a history of diabetes diagnosis, based on measurement of a single glycaemic biomarker that is above the clinical threshold, would have elevated level of the other – i.e., elevated HbA1c at a specific FPG and BMI level (Fig. 4A), or elevated FPG at a specific HbA1c and BMI level (Fig. 4B). These results show that, people without a prior diagnosis who had an elevated level of one diabetes biomarker had varying probabilities of also being elevated for the other depending on region, age, sex and BMI. In particular, those with screen-detected elevated HbA1c, the probability of also having FPG \geq 7.0 mmol/L surpassed 90% in some region-age-BMI combinations. The exceptions were south Asia and Latin America and the Caribbean, where isolated elevated HbA1c and isolated elevated FPG are both common and hence only partially predict one another.

Discussion

Our analysis of pooled global data showed that the use of either FPG or HbA1c alone might substantially underestimate the burden of diabetes relative to the number of people who would have elevated levels of either glycaemic measure, especially in low- and middle-income countries where diagnosis rates are currently low. We also presented prediction equations to help allocate finite resources for measurement of HbA1c in settings where FPG (but not HbA1c) is routinely measured due to logistic or cost constraints. The prediction equations can also be used to enhance diabetes surveillance, to adjust the estimated prevalence in the great majority of population-based health surveys which measure only one biomarker.

Our results, based on a large number of studies from different regions of the world, are consistent with a previous smaller study with data from mostly high-income western countries⁴³ and with the collective results from studies done in individual countries²²⁻⁴² in identifying substantial variation in diabetes classified by FPG versus HbA1c across regions. None of the previous studies had sufficient geographical coverage or participants to robustly quantify regional differences in how those with previously-undiagnosed diabetes that were detected in the study process were identified based on elevation of FPG and HbA1c, in isolation or together, as we did. A study using baseline data from the ORIGIN trial⁴⁸, which covered people with diabetes or prediabetes from 40 countries, did not quantify the concordance and discordance of diabetes based on different biomarkers but its graphical results indicated smaller differences in FPG-HbA1c relationship between Europe and north America than between these regions and Asia or south America. We found that sex, age and BMI were predictors of having concordant versus discordant elevated FPG and elevated HbA1c, which is consistent with results from individual countries^{22,32,34,40,49}. Finally, to our knowledge, our prediction equations are the only global and generalisable tool for predicting the probability of being classified as having diabetes based on one glycaemic biomarker, based on measurement of another. A previous regression related HbA1c to average

glucose⁵⁰ (but not fasting glucose). This relationship is currently used by the American Diabetes Association (ADA) for assessing glycaemic control⁵¹ and not for inferring new diagnosis of diabetes. It used data from only 507 individuals, 422 of whom were non-Hispanic White. The data came from 10 centres, of which 9 were in the USA and Europe. Over half (268) had type 1 diabetes, which is the less common form of diabetes in adults. The conversions did not account for other traits like body-mass index (BMI) and age, nor was the performance of model validated in data that were not used in its derivation.

The strengths of our study include the amount, quality and geographical diversity of data, with studies from seven of eight major world regions. We carefully checked that data on biomarkers of diabetes and prior diagnosis were of high quality and consistent across studies. The scale, quality and consistency of data allowed the characterisation of the relationship between these glycaemic biomarkers and the development of prediction equations which can inform the allocation of resources towards closing the global diagnosis and monitoring gaps.

Our study is also affected by limitations that apply to data pooling analyses, especially those that use data collected in different countries and time periods. Despite our extensive efforts to identify and access data, we had limited data in some regions, and none from Pacific island nations in Oceania region. We did not analyse concordance and discordance with OGTT because few studies, mostly from high-income countries, had data on all three glycaemic biomarkers and because it is no longer widely used in clinical practice or population surveillance. The use of OGTT would identify additional people as having diabetes above and beyond those identified with FPG and HbA1c^{25,28}. We did not model time trends of diagnosed and screen-detected diabetes, which should be the subject of future work, as done for hypertension⁵². Although we checked all data sources and their characteristics thoroughly, and accounted for whether a study had measured FPG and HbA1c in a laboratory or using a portable device, other unobserved differences might

remain due to differing methods, including differences in assays used for measuring FPG and HbA1c. We attempted to mitigate these differences by limiting our data to studies with mid-year of 2000 and later, a period over which HbA1c assays were more likely to be standardised, and by including the study-level random effects in our models, which remove the influence of unobserved differences across studies. Furthermore, the majority of the studies in our analysis measured FPG and HbA1c in a laboratory, and our results were not sensitive to exclusion of studies that had used a portable device (Extended Data Table 7). Further, studies that have tested different devices on the same set of samples have found high correlations (>0.97) among their measurements, and between these devices and reference laboratory methods^{53,54}. We did not have consistent data from all studies on other predictors of concordant versus discordant elevated levels of FPG and HbA1c, such as genetics, fasting duration, time between puncture and centrifuge, measures of insulin resistance, and pre-existing disease status and comorbidities (e.g., liver disease, haemoglobinopathies and anaemia), that might have differential influence on FPG and HbA1c. These predictors should ideally be the subject of coordinated multi-centre studies with consistent data collection methods in different regions and populations. However, such studies would be very costly especially as the number of outcomes and predictors increases. There is intraindividual variation in FPG, and to a lesser extent HbA1c⁵⁵, which could reduce the concordance between FPG and HbA1c, and repeated measurements of FPG may improve its concordance with HbA1c³⁹. Finally, while the studies that were used to define the diagnostic cutpoints were all based on single measurements of glycaemia^{8,56}, as are epidemiological and surveillance studies^{44,57-59}, many clinical guidelines recommend using a second confirmatory test for diabetes diagnosis and initiating treatment¹⁰⁻¹³ (we note that there is variation in this guidance - for example while the ADA requires two above-threshold tests for diagnosing diabetes in most cases¹⁰, the European Association for the Study of Diabetes only advises doing so¹¹, the World Health Organization (WHO) only recommends repeated testing for asymptomatic patients¹³, and the International Diabetes Federation further limits to when the first measurement is close to the

threshold for diagnosis¹²). A key reason for clinical guidelines recommending a confirmatory test is to minimize risks of erroneous results, e.g., due mis-recording of laboratory results or large intraindividual variability (which is more relevant for FPG than HbA1c), potentially leading to a lifelong (mis-)diagnosis for an individual patient. This is not a relevant issue in prevalence studies, as measurement error and fluctuations in one direction are approximately balanced by those in the opposite direction. Reflecting the difference between the clinical and epidemiological approaches to diabetes definition, we referred to those without a prior diagnosis and biomarker levels above the clinical thresholds as screen detected diagnosis, and our prediction equations should be considered a tool for triaging some people at specific levels of FPG for measurement of HbA1c, and possible vice versa, rather than a tool for conferring a diagnosis.

The observed variation in the composition of screen-detected diabetes across regions may be due to a number of factors. Some genetic and phenotypic factors that affect fasting glucose and glucose metabolism through their effects on beta-cell function and insulin sensitivity may be more common in some regions or ethnic groups⁶⁰⁻⁶⁴. Other non-glycaemic factors, including anaemia due to iron deficiency or malaria, certain haemoglobin variants (e.g., HbS and HbF), other haemoglobinopathies, polycythaemia due to living in high altitude, liver and kidney diseases, HIV and certain drugs, can also affect HbA1c and FPG differently⁶⁵⁻⁷⁷. Some of these factors, including malaria-induced and iron deficiency anaemia, haemoglobinopathies such as sickle cell disease and thalassemia, and antiretroviral therapy for HIV, are more prevalent in parts of Asia and Africa⁷⁸⁻⁸⁰, and may have shifted the population distribution of HbA1c or affected its measurement⁷⁷. Guidelines recommend the use of a glucose test for diabetes diagnosis in those with such conditions¹⁰. Smoking and alcohol use, which vary geographically, may differentially affect HbA1c and FPG^{81,82}. Finally, the composition of diabetes that was detected through screening in the survey depends on whether those with prior diagnosis were identified based on FPG or HbA1c. For example, with increasing use of HbA1c in clinical settings in high-income

countries⁸³, a smaller proportion of people with screen-detected diabetes would have elevated HbA1c.

Although both FPG and HbA1c are associated with increased risk of microvascular and macrovascular complications^{2,84,85}, the current evidence on the health implications of having discordant versus concordant elevation of FPG and HbA1c is limited. The few available studies found worse outcomes on the health risks associated with concordant elevation of FPG and HbA1c than discordant elevation, but had mixed findings about how isolated elevation of the two biomarkers compare^{39,86,87}. To the extent that both FPG or HbA1c are predictors of risk, reliance on a single biomarker may miss or delay diagnosis of diabetes in some people and hence increase their risk of complications. This issue is especially relevant in low- and middle-income countries where resource constraints make FPG the more common approach to diagnosis, possibly because the measurement of HbA1c requires equipment or reagents that are more costly, or because standardisation of the HbA1c laboratory process requires specialist training that is not as widely available⁸⁸⁻⁹². With finite resources, our prediction equations can help triage some people for measurement of a second biomarker, often HbA1c, and enhance early detection of diabetes and close the global diagnosis gap¹⁴. For surveillance, the use of a single biomarker, so far largely FPG⁴⁴⁻⁴⁶, underestimates the burden of diabetes, and does so to a larger extent in lowand middle-income countries where a larger share of conditions like diabetes (and hypertension⁵²) remains undiagnosed. Our prediction equations can help provide a more complete picture of the burden of diabetes in different regions.

Acknowledgements

This study was funded by the UK Medical Research Council (grant number MR/V034057/1), the UK Research and Innovation (Research England Policy Support Fund), and the US Centers for Disease Control and Prevention. B.Z. is supported by a fellowship from the Abdul Latif Jameel Institute for Disease and Emergency Analytics, funded by a donation from Community Jameel, at Imperial College London. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to the Author Accepted Manuscript version arising from this submission.

Author contributions

B.Z., K.S. and R.S. led the data collection and management. B.Z., J.E.B., A.M., C.J.P, S.V.H. and M.E. developed the statistical method. B.Z. coded the statistical method, conducted analyses and prepared results. The other authors contributed to study design; and collected, reanalysed, checked and pooled data. B.Z. and M.E. wrote the first draft of the report. All other authors reviewed and commented on the draft report.

Competing interests statement

A.W. reports an honorarium from Sanofi for serving as a panel member at an educational event on thyroid cancer. The authors alone are responsible for the views expressed in this Article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.

Additional Information

Supplementary Information is available for this paper.

Correspondence and requests for materials should be addressed to Majid Ezzati (majid.ezzati@imperial.ac.uk).

References

1. Tomic, D., Shaw, J. E. & Magliano, D. J. The burden and risks of emerging complications of diabetes mellitus. *Nat Rev Endocrinol* **18**, 525-539 (2022).

2. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. *Lancet* **375**, 2215-2222 (2010).

3. Cheng, G., Huang, C., Deng, H. & Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. *Intern Med J* **42**, 484-491 (2012).

4. Tsilidis, K. K., Kasimis, J. C., Lopez, D. S., Ntzani, E. E. & Ioannidis, J. P. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. *BMJ* **350**, g7607 (2015).

5. Mahamat-Saleh, Y. et al. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: a systematic review and meta-analysis of observational studies. *BMJ Open* **11**, e052777 (2021).

6. Foe-Essomba, J. R. et al. Diabetes mellitus and tuberculosis, a systematic review and metaanalysis with sensitivity analysis for studies comparable for confounders. *PLoS One* **16**, e0261246 (2021).

7. Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. *Diabetes Care* **20**, 1183-1197 (1997).

8. International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. *Diabetes Care* **32**, 1327-1334 (2009).

9. World Health Organization. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. (2011).

10. ElSayed, N. A. et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023. *Diabetes Care* **46**, S19-S40 (2023).

11. Cosentino, F. et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. *Eur Heart J* **41**, 255-323 (2020).

12. International Diabetes Federation. IDF clinical practice recommendations for managing type 2 diabetes in primary care. (2017).

13. World Health Organization. Classification of diabetes mellitus. (2019).

14. Selvin, E., Wang, D., Matsushita, K., Grams, M. E. & Coresh, J. Prognostic implications of single-sample confirmatory testing for undiagnosed diabetes: a prospective cohort study. *Ann Intern Med* **169**, 156-164 (2018).

15. Higgins, T. HbA1c for screening and diagnosis of diabetes mellitus. *Endocrine* **43**, 266-273 (2013).

16. Sacks, D. B. A1c versus glucose testing: a comparison. *Diabetes Care* **34**, 518-523 (2011).

17. Abdul-Ghani, M. A., Tripathy, D. & DeFronzo, R. A. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. *Diabetes Care* **29**, 1130-1139 (2006).

18. Ogurtsova, K. et al. IDF diabetes Atlas: global estimates of undiagnosed diabetes in adults for 2021. *Diabetes Res Clin Pract* **183**, 109118 (2022).

19. Christensen, D. L. et al. Moving to an A1c-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. *Diabetes Care* **33**, 580-582 (2010).

20. Bennett, C. M., Guo, M. & Dharmage, S. C. HbA(1c) as a screening tool for detection of type 2 diabetes: a systematic review. *Diabet Med* **24**, 333-343 (2007).

21. Kaur, G. et al. Diagnostic accuracy of tests for type 2 diabetes and prediabetes: a systematic review and meta-analysis. *PLoS One* **15**, e0242415 (2020).

22. Carson, A. P., Reynolds, K., Fonseca, V. A. & Muntner, P. Comparison of A1c and fasting glucose criteria to diagnose diabetes among U.S. adults. *Diabetes Care* **33**, 95-97 (2010).

23. Ho-Pham, L. T., Nguyen, U. D. T., Tran, T. X. & Nguyen, T. V. Discordance in the diagnosis of diabetes: comparison between HbA1c and fasting plasma glucose. *PLoS One* **12**, e0182192 (2017).

24. Lipska, K. J. et al. Identifying dysglycemic states in older adults: implications of the emerging use of hemoglobin A1c. *J Clin Endocrinol Metab* **95**, 5289-5295 (2010).

25. Nazir, A. et al. Prevalence of diabetes in Asian Indians based on glycated hemoglobin and fasting and 2-h post-load (75-g) plasma glucose (CURES-120). *Diabetes Technol Ther* **14**, 665-668 (2012).

26. Rathmann, W. et al. Hemoglobin A1c and glucose criteria identify different subjects as having type 2 diabetes in middle-aged and older populations: the KORA S4/F4 Study. *Ann Med* **44**, 170-177 (2012).

27. Wade, A. N. et al. Concordance between fasting plasma glucose and HbA1c in the diagnosis of diabetes in black South African adults: a cross-sectional study. *BMJ Open* **11**, e046060 (2021).

28. Cowie, C. C. et al. Prevalence of diabetes and high risk for diabetes using A1c criteria in the U.S. population in 1988–2006. *Diabetes Care* **33**, 562-568 (2010).

29. Kharroubi, A. T., Darwish, H. M., Abu Al-Halaweh, A. I. & Khammash, U. M. Evaluation of glycated hemoglobin (HbA1c) for diagnosing type 2 diabetes and prediabetes among Palestinian Arab population. *PLoS One* **9**, e88123 (2014).

30. Abdul Murad, N. A. et al. Discordance between fasting plasma glucose (FPG) and HbA1c in diagnosing diabetes and pre-diabetes in The Malaysian Cohort. *J ASEAN Fed Endocr Soc* **36**, 127-132 (2021).

31. Davidson, M. B. & Schriger, D. L. Effect of age and race/ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes. *Diabetes Res Clin Pract* **87**, 415-421 (2010).

32. Jeon, J. Y. et al. Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1c. *Diabetes Metab J* **37**, 349-357 (2013).

33. Mo, M. et al. Combining glycosylated hemoglobin A1c and fasting plasma glucose for diagnosis of type 2 diabetes in Chinese adults. *BMC Endocr Disord* **13**, 44 (2013).

34. Rathod, S. D. et al. Glycated haemoglobin A1c (HbA1c) for detection of diabetes mellitus and impaired fasting glucose in Malawi: a diagnostic accuracy study. *BMJ Open* **8**, e020972 (2018).

35. Rosella, L. C., Lebenbaum, M., Fitzpatrick, T., Zuk, A. & Booth, G. L. Prevalence of prediabetes and undiagnosed diabetes in Canada (2007-2011) according to fasting plasma glucose and HbA1c screening criteria. *Diabetes Care* **38**, 1299-1305 (2015).

36. Takahashi, Y. et al. Prevalence of diabetes estimated by plasma glucose criteria combined with standardized measurement of HbA1c among health checkup participants on Miyako Island, Japan. *Diabetes Care* **23**, 1092-1096 (2000).

37. Unwin, N. et al. Prevalence and phenotype of diabetes and prediabetes using fasting glucose vs HbA1c in a Caribbean population. *J Glob Health* **7**, 020407 (2017).

38. Zhang, Y. H. et al. Diabetes and pre-diabetes as determined by glycated haemoglobin A1c and glucose levels in a developing southern Chinese population. *PLoS One* **7**, e37260 (2012).

39. Selvin, E., Steffes, M. W., Gregg, E., Brancati, F. L. & Coresh, J. Performance of A1c for the classification and prediction of diabetes. *Diabetes Care* **34**, 84-89 (2011).

40. Rathmann, W., Bongaerts, B. & Kostev, K. Association of characteristics of people with type 2 diabetes mellitus with discordant values of fasting glucose and HbA1c. *J Diabetes* **10**, 934-941 (2018).

41. Falguera, M. et al. Prevalence of pre-diabetes and undiagnosed diabetes in the Mollerussa prospective observational cohort study in a semi-rural area of Catalonia. *BMJ Open* **10**, e033332 (2020).

42. Soulimane, S. et al. Comparing incident diabetes as defined by fasting plasma glucose or by HbA(1c). The AusDiab, Inter99 and DESIR studies. *Diabet Med* **28**, 1311-1318 (2011).

43. NCD Risk Factor Collaboration. Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331 288 participants. *Lancet Diabetes Endocrinol* **3**, 624-637 (2015).

44. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. *Lancet* **387**, 1513-1530 (2016).

45. Sun, H. et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. *Diabetes Res Clin Pract* **183**, 109119 (2022).

46. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. 2013.

http://apps.who.int/iris/bitstream/10665/94384/1/9789241506236_eng.pdf?ua=1.

47. Narayan, K. M. V. & Jagannathan, R. Two in one: diagnosing type 2 diabetes with single-sample testing. *Ann Intern Med* **169**, 193-194 (2018).

48. Ramachandran, A., Riddle, M. C., Kabali, C., Gerstein, H. C. & ORIGIN Investigators. Relationship between A1c and fasting plasma glucose in dysglycemia or type 2 diabetes: an analysis of baseline data from the ORIGIN trial. *Diabetes Care* **35**, 749-753 (2012).

49. Balkau, B. et al. Are the same clinical risk factors relevant for incident diabetes defined by treatment, fasting plasma glucose, and HbA1c? *Diabetes Care* **34**, 957-959 (2011).

50. Nathan, D. M. et al. Translating the A1C assay into estimated average glucose values. *Diabetes Care* **31**, 1473-1478 (2008).

51. ElSayed, N. A. et al. 6. Glycemic targets: standards of care in diabetes-2023. *Diabetes Care* **46**, S97-S110 (2023).

52. NCD Risk Factor Collaboration. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. *Lancet* **398**, 957-980 (2021).

53. Pfutzner, A. et al. Clinical assessment of the accuracy of blood glucose measurement devices. *Curr Med Res Opin* **28**, 525-531 (2012).

54. Sutheran, H. L. & Reynolds, T. Technical and clinical accuracy of three blood glucose meters: clinical impact assessment using error grid analysis and insulin sliding scales. *J Clin Pathol* **69**, 899-905 (2016).

55. Selvin, E., Crainiceanu, C. M., Brancati, F. L. & Coresh, J. Short-term variability in measures of glycemia and implications for the classification of diabetes. *Arch Intern Med* **167**, 1545-1551 (2007).

56. Colagiuri, S. et al. Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. *Diabetes Care* **34**, 145-150 (2011).

57. Ali, M. K. et al. Achievement of goals in U.S. diabetes care, 1999-2010. *N Engl J Med* **368**, 1613-1624 (2013).

58. Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. *JAMA* **314**, 1021-1029 (2015).

59. Kazemian, P., Shebl, F. M., McCann, N., Walensky, R. P. & Wexler, D. J. Evaluation of the cascade of diabetes care in the United States, 2005-2016. *JAMA Intern Med* **179**, 1376-1385 (2019).

60. Kahn, S. E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. *Diabetologia* **46**, 3-19 (2003).

61. Ashcroft, F. M. & Rorsman, P. Diabetes mellitus and the beta cell: the last ten years. *Cell* **148**, 1160-1171 (2012).

62. Ramachandran, A., Ma, R. C. & Snehalatha, C. Diabetes in Asia. *Lancet* **375**, 408-418 (2010).

63. Motala, A. A., Mbanya, J. C., Ramaiya, K., Pirie, F. J. & Ekoru, K. Type 2 diabetes mellitus in sub-Saharan Africa: challenges and opportunities. *Nat Rev Endocrinol* **18**, 219-229 (2022).

64. Wheeler, E. et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. *PLoS Med* **14**, e1002383 (2017).

65. English, E. et al. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a systematic review. *Diabetologia* **58**, 1409-1421 (2015).

66. Bleyer, A. J. et al. The impact of sickle cell trait on glycated haemoglobin in diabetes mellitus. *Diabet Med* **27**, 1012-1016 (2010).

67. Klonoff, D. C. Hemoglobinopathies and hemoglobin A1c in diabetes mellitus. *J Diabetes Sci Technol* **14**, 3-7 (2020).

68. Monroe, A. K., Glesby, M. J. & Brown, T. T. Diagnosing and managing diabetes in HIV-infected patients: current concepts. *Clin Infect Dis* **60**, 453-462 (2015).

69. Christiansen, R., Rasmussen, L. M., Nybo, H., Steenstrup, T. & Nybo, M. The relationship between HbA1c and fasting plasma glucose in patients with increased plasma liver enzyme measurements. *Diabet Med* **29**, 742-747 (2012).

70. Jung, M. et al. Performance of non-traditional hyperglycemia biomarkers by chronic kidney disease status in older adults with diabetes: results from the Atherosclerosis Risk in Communities Study. *J Diabetes* **10**, 276-285 (2018).

71. Little, R. R., La'ulu, S. L., Hanson, S. E., Rohlfing, C. L. & Schmidt, R. L. Effects of 49 different rare Hb variants on HbA1c measurement in eight methods. *J Diabetes Sci Technol* **9**, 849-856 (2015).

72. Cohen, R. M. et al. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. *Blood* **112**, 4284-4291 (2008).

73. Bazo-Alvarez, J. C. et al. Glycated haemoglobin (HbA1c) and fasting plasma glucose relationships in sea-level and high-altitude settings. *Diabet Med* **34**, 804-812 (2017).

74. Unnikrishnan, R., Anjana, R. M. & Mohan, V. Drugs affecting HbA1c levels. *Indian J Endocrinol Metab* **16**, 528-531 (2012).

75. Kasujja, F. X., Nuwaha, F., Ekirapa, E. K., Kusolo, R. & Mayega, R. W. The association between asymptomatic malaria and blood glucose among outpatients in a rural low-income setting. *Diabetes Epidemiol Manage* **9**, 100112 (2023).

76. Ahmad, J. & Rafat, D. HbA1c and iron deficiency: a review. *Diabetes Metab Syndr* **7**, 118-122 (2013).

77. National Glycohemoglobin Standardization Program. Factors that interfere with HbA1c test sesults. 2022. https://ngsp.org/factors.asp.

78. Williams, T. N. & Weatherall, D. J. World distribution, population genetics, and health burden of the hemoglobinopathies. *Cold Spring Harb Perspect Med* **2**, a011692 (2012).

79. Stevens, G. A. et al. National, regional, and global estimates of anaemia by severity in women and children for 2000-19: a pooled analysis of population-representative data. *Lancet Glob Health* **10**, e627-e639 (2022).

80. Piel, F. B. et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. *Lancet* **381**, 142-151 (2013).

81. Soulimane, S. et al. HbA1c, fasting and 2 h plasma glucose in current, ex- and never-smokers: a meta-analysis. *Diabetologia* **57**, 30-39 (2014).

82. Schrieks, I. C., Heil, A. L., Hendriks, H. F., Mukamal, K. J. & Beulens, J. W. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and metaanalysis of intervention studies. *Diabetes Care* **38**, 723-732 (2015).

83. Gillett, M. et al. The cost-effectiveness of testing strategies for type 2 diabetes: a modelling study. *Health Technol Assess* **19**, 1-80 (2015).

84. Di Angelantonio, E. et al. Glycated hemoglobin measurement and prediction of cardiovascular disease. *JAMA* **311**, 1225 (2014).

85. American Diabetes Association. Diagnosis and classification of diabetes mellitus. *Diabetes Care* **37 Suppl 1**, S81-90 (2014).

86. Woerle, H. J. et al. Diagnostic and therapeutic implications of relationships between fasting, 2-hour postchallenge plasma glucose and hemoglobin a1c values. *Arch Intern Med* **164**, 1627-1632 (2004).

87. Gujral, U. P. et al. Isolated HbA1c identifies a different subgroup of individuals with type 2 diabetes compared to fasting or post-challenge glucose in Asian Indians: The CARRS and MASALA studies. *Diabetes Res Clin Pract* **153**, 93-102 (2019).

88. Park, P. H. & Pastakia, S. D. Access to hemoglobin A1c in rural Africa: a difficult reality with severe consequences. *J Diabetes Res* **2018**, 6093595 (2018).

89. Little, R. R. & Rohlfing, C. L. The long and winding road to optimal HbA1c measurement. *Clin Chim Acta* **418**, 63-71 (2013).

90. Masis, L. et al. Estimating treatment costs for uncomplicated diabetes at a hospital serving refugees in Kenya. *PLoS One* **17**, e0276702 (2022).

91. Jingi, A. M. et al. Access to diagnostic tests and essential medicines for cardiovascular diseases and diabetes care: cost, availability and affordability in the West Region of Cameroon. *PLoS One* **9**, e111812 (2014).

92. Atun, R. et al. Diabetes in sub-Saharan Africa: from clinical care to health policy. *Lancet Diabetes Endocrinol* **5**, 622-667 (2017).

93. Shabbir, S. et al. Type and frequency of hemoglobinopathies, diagnosed in the area of Karachi, in Pakistan. *Cogent Med* **3**, 1188875 (2016).

94. Breunig, M. M., Kriegel, H.-P., Ng, R. T. & Sander, J. LOF: identifying density-based local outliers. in *Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data* 93-104 (2000).

Fig. 1. Flowchart of data cleaning and use.

^a Excluded because glucose metabolism changes during pregnancy.

- ^b Data from the first available measurement were used for these participants.
- ^c Some surveys only measured glycaemic biomarker on a subset of participants for logistic or budget reasons.
- ^d Excluded because glycaemic measurements in these participants were systematically different from the rest from the same study, possibly because the specific area had high prevalence of thalassemia⁹³.
- ^e Excluded because such values are more likely to be due to data recording error than values within the range.
- ^f We removed participants for implausible pairs of FPG and HbA1c using the method of local outlier factor (LOF)⁹⁴. This approach detects data combinations that are extremes in the joint density of the variable pairs (e.g., a participant with FPG of 5 mmol/L and HbA1c of 17%, or with FPG of 28 mmol/L and HbA1c of 5%). We identified extremes as those measurements whose measure of local density by LOF method is less than half of the average of their 100 nearest neighbours.
- ^g Including all 2,436 participants from four studies that did not measure BMI.
- ^h Including all 3,455 participants from four studies in which all individuals without previously diagnosed diabetes had FPG <7.0 mmol/L and HbA1c <6.5%.

Fig. 2. Extent and composition of diagnosed and screen-detected diabetes by region.

(A) Crude and age-standardised proportion of participants with diagnosed or screen-detected diabetes, and, for those without prior diagnosis, whether they had isolated elevated FPG (FPG \geq 7.0 mmol/L and HbA1c <6.5%), isolated elevated HbA1c (HbA1c \geq 6.5% and FPG <7.0 mmol/L) or elevated levels of both, and (B) crude and age-standardised proportion of participants with screen-detected diabetes who had isolated elevated FPG, isolated elevated HbA1c or elevated levels of both, by region. Its contents are the same as the segment of Panel A that is below the zero line, scaled to 100% so that the composition of screen-detected diabetes can be compared across regions, regardless of its total prevalence. Having elevated levels of both biomarkers has high positive predictive value for subsequent clinical diagnosis and risk of complications^{14,47}, and hence this group is similar to clinically-diagnosed diabetes.

In panel A, regions are ordered by the total proportion of participants who had diagnosed and screen-detected diabetes. In panel B, regions are ordered by the crude proportion of participants with screen-detected diabetes who had elevated levels of both FPG and HbA1c. See Extended Data Fig. 1 for sex-specific results.

Fig. 3. The predicted probability of having screen-detected diabetes with isolated elevated HbA1c or FPG.

The figure shows the probability, by sex, age and region, of participants who did not have prior diagnosis of diabetes of having (A) elevated HbA1c (\geq 6.5%) at different FPG and BMI levels, and (B) elevated FPG (\geq 7.0 mmol/L) at different HbA1c and BMI levels. The probabilities were calculated using coefficients of prediction equation Model 8, with measurement method set to laboratory for prediction. These results show the probability of having screen-detected diabetes if the second biomarker had been measured, for a person whose first biomarker was below the clinical threshold for diabetes diagnosis.

Fig. 4. The predicted probability of having screen-detected diabetes with elevated levels of both FPG and HbA1c.

The figure shows the probability, by sex, age and region, of participants who did not have prior diagnosis of diabetes of having (A) elevated HbA1c (\geq 6.5%) at different FPG and BMI levels, and (B) elevated FPG (\geq 7.0 mmol/L) at different HbA1c and BMI levels. The probabilities were calculated using coefficients of prediction equation Model 8, with measurement method set to laboratory for prediction. These results show the probability that the second biomarker, had it been measured, would be above the clinical threshold for diabetes diagnosis, for a person whose first biomarker was already above the clinical threshold for diabetes diagnosis. Having elevated levels of both biomarkers has high positive predictive value for subsequent clinical diagnosis and risk of complications^{14,47}.

Table 1. Characteristics of studies and participants included in the analysis: all participants, participants without diagnosed diabetes, and

Number of countries Median Number of Number of Percent Mean (SD) Mean FPG Mean HbA1c Mean BMI (% of all countries in year of studies* participants* female (%) age (years) (mmol/L) (%) (kq/m^2) the region or world) studies All participants Central and eastern Europe 8 4 (20%) 2012 55.6 55 (11) 5.8 5.5 28.2 51,352 Central Asia. Middle East and 10 5 (18%) 2015 73,109 54.4 47 (15) 5.7 5.9 27.7 north Africa High-income western 48 11 (41%) 2010 190.276 53.2 53 (18) 5.6 5.5 27.8 Latin America and the 17 11 (31%) 2016 75,257 62.3 48 (18) 5.7 5.7 28.3 Caribbean 8 23.1 South Asia 2 (29%) 2012 87,404 54.4 42 (14) 5.9 6.0 East and southeast Asia and 19 2012 5.7 24.0 7 (41%) 112.854 56.2 52 (16) 5.6 the Pacific 7 Sub-Saharan Africa 5 (10%) 2014 62.6 49 (14) 6.1 6.2 26.3 11,055 All studies 117 45 (22%) 2012 601,307 55.6 50 (17) 5.7 5.7 26.4 Participants without diagnosed diabetes Central and eastern Europe 8 4 (20%) 2012 12,086 52.2 49 (14) 5.4 5.4 27.4 Central Asia, Middle East and 10 5 (18%) 2015 46,886 55.1 46 (14) 5.3 5.6 27.5 north Africa 48 5.3 27.4 High-income western 11 (41%) 2010 100,140 53.9 52 (16) 5.4 Latin America and the 5.3 17 11 (31%) 2016 38,524 60.8 48 (17) 5.4 28.0 Caribbean South Asia 8 2 (29%) 2012 28,554 52.7 5.6 5.7 24.0 41 (14) East and southeast Asia and 23.9 19 7 (41%) 2012 92,900 56.6 51 (16) 5.4 5.6 the Pacific Sub-Saharan Africa 7 5 (10%) 2014 8,464 62.2 48 (14) 5.6 5.8 26.2 5.4 26.2 All studies 117 45 (22%) 2012 327,554 55.7 49 (16) 5.5 Participants without diagnosed diabetes who had FPG ≥7.0 mmol/L and/or HbA1c ≥6.5% Central and eastern Europe 8 4 (20%) 2012 551 41.7 58 (11) 8.0 6.4 31.3

participants without diagnosed diabetes who had FPG ≥7.0 mmol/L and/or HbA1c ≥6.5%.

Central Asia, Middle East and north Africa	10	5 (18%)	2015	3,328	52	55 (13)	7.7	7.3	30.2
High-income western	44	11 (41%)	2009	4,422	43.1	62 (13)	7.9	6.7	31.0
Latin America and the Caribbean	17	11 (31%)	2016	2,718	63	55 (15)	8.4	7.3	30.4
South Asia	8	2 (29%)	2012	4,612	51.7	47 (13)	8.0	7.4	26.0
East and southeast Asia and the Pacific	19	7 (41%)	2012	6,157	52	58 (13)	8.1	7.0	26.1
Sub-Saharan Africa	7	5 (10%)	2014	1,257	60.5	55 (11)	7.5	7.2	28.7
All studies	113	45 (22%)	2013	23,045	51.7	56 (14)	8.0	7.1	28.4

SD: standard deviation; FPG: fasting plasma glucose; BMI: body-mass index.

Table 2. Predictors of whether screen-detected diabetes is manifested as isolated elevated FPG, isolated elevated HbA1c or elevated levels of both. The association with each predictor is reported as prevalence ratios, adjusted for all other variables in the table, in the regression models described in Methods in which data from individual participants with screen-detected diabetes were used. See Extended Data Table 7 for results excluding studies that had measured FPG in capillary whole blood using a portable device.

	Isolated elevated FPG			Isolated elevated HbA1c			Elevated levels of both		
	prevalence ratio	credible interval	posterior probability	prevalence ratio	credible interval	posterior probability	prevalence ratio	credible interval	posterior probability
Region									
High-income western	Reference			Reference			Reference		
Central and eastern Europe	1.16	0.73-1.86	0.259	0.62	0.35-1.09	0.049	0.83	0.61-1.12	0.115
Latin America and the Caribbean	0.48	0.32-0.72	<0.001	1.42	0.93-2.16	0.053	1.16	0.91-1.46	0.109
East and southeast Asia and the Pacific	0.51	0.35-0.73	<0.001	1.53	1.04-2.25	0.015	1.35	1.10-1.67	0.002
South Asia	0.24	0.13-0.44	<0.001	1.65	0.89-3.10	0.056	1.52	1.08-2.15	0.009
Central Asia, Middle East and north Africa	0.33	0.20-0.54	<0.001	2.20	1.31-3.67	0.001	1.06	0.80-1.40	0.342
Sub-Saharan Africa	0.33	0.19-0.57	<0.001	1.65	0.92-2.94	0.045	1.31	0.96-1.79	0.045
Sex									
Women	Reference			Reference			Reference		
Men	1.10	1.07-1.14	<0.001	0.86	0.83-0.89	<0.001	1.07	1.03-1.11	<0.001
Age (per 10 years of age)	0.97	0.96-0.98	<0.001	1.05	1.04-1.06	<0.001	0.97	0.96-0.99	<0.001
Body-mass index (per 5 kg/m ²)	0.92	0.90-0.93	<0.001	0.99	0.98-1.01	0.137	1.07	1.06-1.08	<0.001
Study year (per 5 years of time)	1.01	0.89-1.14	0.447	1.05	0.92-1.20	0.240	1.06	0.99-1.14	0.048
Percent people with diabetes who had been diagnosed before (per 10 percentage points) Measurement of FPG	0.98	0.89-1.09	0.380	0.98	0.88-1.09	0.354	1.05	0.99-1.11	0.046
Laboratory	Reference			Reference			Reference		
Portable device	1.71	1.00-2.91	0.025	0.89	0.51-1.56	0.338	0.87	0.64-1.16	0.169
Measurement of HbA1c									
Laboratory	Reference			Reference			Reference		
Portable device	0.33	0.16-0.68	0.001	2.13	1.05-4.20	0.018	0.54	0.35-0.81	0.002

Methods

Data

We used data collated by the NCD Risk Factor Collaboration (NCD-RisC). The data sources included national and multi-country measurement surveys that were either publicly available or identified and accessed through contacts with relevant government or academic partners. Additionally, we searched and reviewed published studies as detailed previously⁴⁴ and invited eligible studies to join NCD-RisC, as did we with participating studies in a previous pooled analyses of cardiometabolic risk factors⁹⁵⁻⁹⁸. The NCD-RisC database is continuously updated through the above routes and through periodic requests to NCD-RisC members to suggest additional sources in their countries.

The inclusion criteria were: (1) data were collected using a probabilistic sampling method with a defined sampling frame; (2) data were from population samples at the national, subnational (defined as covering one or more subnational regions, more than three urban communities or more than five rural communities), or community level (defined as having up to three urban communities or up to five rural communities); and (3) both FPG and HbA1c were measured. Studies were excluded if they had (1) enrolled participants based on health status or cardiovascular risk; (2) were conducted only among ethnic minorities or specific educational, occupational, or other socioeconomic subgroups; (3) recruited participants through health facilities, except studies based on primary care system in high-income and central European countries with universal insurance; (4) had not measured either FPG or HbA1c; (5) had not instructed participants to fast at least for 6 hours prior to FPG measurement; (6) had only measured FPG or HbA1c in the subset of participants who had known diabetes; (7) had measured HbA1c only in a subset of participants selected based on their levels of FPG, and vice versa; (8) had not collected information on prior diagnosis of diabetes; and (9) their mid-year was prior to 2000, before HbA1c assays were widely standardised⁹⁹.

At least two independent persons ascertained that each data source met the inclusion criteria. All NCD-RisC members were asked to review the list of data sources from their country, to verify that the included data met the inclusion criteria and were not duplicates. When FPG and/or HbA1c data were missing for more than 10% of participants in a survey, we checked study design documentation to verify missingness at random so that the above inclusion criteria were met. Questions and clarifications were discussed with NCD-RisC members and resolved before data were incorporated in the database. For each data source, we recorded the study population, sampling approach, years of measurement, and measurement methods, including whether FPG and HbA1c were measured in a laboratory or using a portable point-of-care device. In 11 studies, fasting glucose was measured in capillary whole blood; six of these used equipment that reported plasma-equivalent using the relationship in a study that compared different types of specimens¹⁰⁰. In a sensitivity analysis, we excluded these 11 studies from the analysis.

We established whether a participant had diagnosed diabetes using questions worded as variations of "Have you ever been told by a doctor or other health professional that you had diabetes, also called high blood sugar?" In some surveys, the question on previous diabetes diagnosis was asked only if a participant had answered "yes" to an earlier question, usually worded as "Have you ever been screened for diabetes?" or "Have you ever had your blood glucose measured?". In these cases, participants who answered "no" to the first question were coded as not having been diagnosed with diabetes. We also considered participants who used diabetes medication such as metformin or insulin as having diabetes.

The data cleaning and use process is summarised in Fig. 1, and the list of data sources and their characteristics are stated in Supplementary Table 1.

The pooled analysis was approved by Imperial College London Research Ethics Committee. The participating studies followed their corresponding institutional approval process at the time of data collection.

Statistical analysis

We divided the participants into those who had a prior diagnosis of diabetes (hereafter referred to as diagnosed diabetes), those without a prior diagnosis of diabetes who had elevated FPG (FPG \geq 7.0 mmol/L) and/or elevated HbA1c (HbA1c \geq 6.5%) (referred to as screen-detected diabetes), and the remainder who did not have a prior diagnosis, elevated FPG, or elevated HbA1c. We conducted the following three analyses.

Composition of screen-detected diabetes by FPG and HbA1c levels: We graphically presented how total diabetes is divided into diagnosed and screen-detected diabetes, and how screendetected diabetes is further divided into those manifested as only elevated FPG (FPG \geq 7.0 mmol/L and HbA1c <6.5%, referred to as isolated elevated FPG), only elevated HbA1c (HbA1c \geq 6.5% and FPG <7.0 mmol/L, referred to as isolated elevated HbA1c), or elevated levels of both FPG and HbA1c. We report crude and age-standardised prevalence. We calculated crude prevalence using data from all participants regardless of age. We calculated age-standardised prevalence as the weighted mean of the age-specific values using the WHO standard population¹⁰¹. We also graphically described the relationship of FPG and HbA1c among people without diagnosed diabetes.

Predictors of heterogeneity in FPG and HbA1c status: We fitted regression models to examine what individual and study level factors were associated with whether participants with screendetected diabetes were identified by elevated FPG, elevated HbA1c or elevated levels of both.

We fitted three separate log-binomial regression models, with each of the three outcomes, i.e., isolated elevated FPG, isolated elevated HbA1c, and elevated levels of both, as a distinct dependent variable. Log-binomial regression estimates the association of each independent variable with the probability of a participant falling in each of the three categories as prevalence ratio (PR). The individual level explanatory variables were sex, age, BMI; the study level variables were region, study year, whether FPG and HbA1c were measured in a laboratory or using a portable device (to account for differences in measurement between them^{53,54}) and percentage of participants with diabetes who had been diagnosed before in each study. The regressions also included a study-level random effect to account for unobserved factors that lead to systematic differences in each study compared to others^{102,103}.

We fitted the log-binomial regression models using Bayesian model fitting implemented in MultiBUGS (version 2.0)¹⁰⁴. Bayesian model fitting has better estimation performance for logbinomial model than a frequentist approach¹⁰⁵. We used normal distribution with mean of zero and standard deviation of 0.01 as the prior for the regression coefficients and a uniform distribution on 0.01-2.00 as the prior for the standard deviation of study-level random effects. We ran four chains and assessed convergence visually using trace plots. After burn-in and thinning, we kept 50,000 draws to represent the posterior distributions of the PRs. We report PRs and their 95% credible intervals (CrI) as the mean and the 2.5th and 97.5th percentiles of their posterior distributions. We report the posterior probability that a PR with posterior mean estimate >1.0 is less than one, and vice versa for PRs <1.0; the posterior probabilities are analogous to p-values in a frequentist analysis.

Prediction equations: We tested nine logistic regression models for estimating the probability that a person without diagnosed diabetes at a specific level of FPG had an HbA1c over the clinical threshold for diabetes (HbA1c \geq 6.5%). The predictors in the models were selected based on

clinical and epidemiological relevance and data availability. The predictors included FPG as well as sex, age, BMI, glycaemic measurement method (laboratory based or via a portable device) and region. The nine models (Extended Data Table 2) differed by the predictors included and whether the coefficient of the FPG term was allowed to vary by sex and region. In all models, we included a study-level random effect to account for unobserved factors that lead to systematic differences in each study compared to others^{102,103}. We also tested the inclusion of nonlinear (square and cubic) terms of FPG, year of data collection and other interaction terms; these models performed worse than those without the additional terms as evaluated by the metrics below and are not presented. We did not interact age, which is a continuous variable, with FPG and other terms, to avoid overfitting. We fitted and evaluated all prediction models in R (version 4.2.1)¹⁰⁶.

We assessed the performance of the models in predicting (i) individual participants' status of having HbA1c \geq 6.5% based on their FPG and (ii) the prevalence of HbA1c \geq 6.5% for an entire study. The performance at individual level reflects how well the model works for triaging patients for further measurement for diabetes, and the performance at study (or population) level assesses how well the model works for diabetes surveillance. We used the C-statistic to assess individual-level performance, and mean error and mean absolute error between the predicted and observed prevalence for population-level performance. The C-statistic measures how well a model distinguishes individuals with higher risk from those with lower risk. Mean error assesses whether there is systematic difference (i.e., bias) in the predicted prevalence compared to the observed one, and mean absolute error by study, sex and age group (18-39 years; 40-59 years; 60 years and older).

We evaluated the performance of the models in 20 rounds of 10-fold cross-validation¹⁰⁷. In each fold of each round, we held out all data from a random 10% of studies, fitted the model to the data

from the remaining 90% of studies and made estimates for the held-out observations. We repeated this process 10 times, each time holding out a different 10% of studies so that each study was held out exactly once. We calculated the above individual-level and population-level performance metrics for all held-out observations. We repeated the 10-fold cross-validation 20 times and report the means and ranges of the performance metrics from all 20 rounds.

We repeated the same process for predicting the probability of having FPG \geq 7.0 mmol/L based on HbA1c.

Data availability statement

Data used in this research are governed by data sharing protocols of participating studies. Contact information for data providers can be obtained from www.ncdrisc.org and https://doi.org/10.5281/zenodo.8169146.

Code availability statement

The computer code for the log-binomial regression model in this work is available at www.ncdrisc.org and https://doi.org/10.5281/zenodo.8169146.

References

95. Farzadfar, F. et al. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. *Lancet* **377**, 578-586 (2011).

96. Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 countryyears and 9.1 million participants. *Lancet* **377**, 557-567 (2011).

97. Danaei, G. et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 countryyears and 5.4 million participants. *Lancet* **377**, 568-577 (2011).

98. Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. *Lancet* **378**, 31-40 (2011).

99. American Diabetes Association. Implications of the Diabetes Control and Complications Trial. *Diabetes Care* **23 Suppl 1**, S24-26 (2000).

100. Carstensen, B. et al. Measurement of blood glucose: comparison between different types of specimens. *Ann Clin Biochem* **45**, 140-148 (2008).

101. Ahmad, O. B. et al. Age standardization of rates: a new WHO standard. GPE Discussion Paper Series: No.31. (2001).

102. Laird, N. M. & Ware, J. H. Random-effects models for longitudinal data. *Biometrics* **38**, 963-974 (1982).

103. Feller, A. & Gelman, A. Hierarchical models for causal effects. in *Emerging Trends in the Social and Behavioral Sciences* (eds. Scott, R.A. & Kosslyn, S.M.) 1-16 (2015).

104. Goudie, R. J. B., Turner, R. M., De Angelis, D. & Thomas, A. MultiBUGS: a parallel Implementation of the BUGS modelling framework for faster Bayesian inference. *J Stat Softw* **95**(2020).

105. Torman, V. B. & Camey, S. A. Bayesian models as a unified approach to estimate relative risk (or prevalence ratio) in binary and polytomous outcomes. *Emerg Themes Epidemiol* **12**, 8 (2015).

106. R Core Team. R: a language and environment for statistical computing. (2022).

107. Borra, S. & Di Ciaccio, A. Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. *Comput Stat Data Anal* **54**, 2976-2989 (2010).

NCD Risk Factor Collaboration (NCD-RisC)

Bin Zhou¹, Kate E. Sheffer¹, James E. Bennett¹, Edward W. Gregg^{1,2}, Goodarz Danaei³, Rosie K. Singleton¹, Jonathan E. Shaw⁴, Anu Mishra⁵, Victor Lhoste¹, Rodrigo M. Carrillo-Larco⁶, Andre P. Kengne⁷, Nowell H. Phelps¹, Rachel A. Heap¹, Archie W. Rayner¹, Gretchen A. Stevens⁸, Chris J. Paciorek⁹, Leanne M. Riley⁸, Melanie J. Cowan⁸, Stefan Savin⁸, Stephen Vander Hoorn¹⁰, Yuan Lu¹¹, Meda E. Pavkov¹², Giuseppina Imperatore¹², Carlos A. Aguilar-Salinas¹³, Noor Ani Ahmad¹⁴, Ranjit Mohan Anjana¹⁵, Kairat Davletov¹⁶, Farshad Farzadfar¹⁷, Clicerio González-Villalpando¹⁸, Young-Ho Khang¹⁹, Hyeon Chang Kim²⁰, Tiina Laatikainen²¹, Avula Laxmaiah²², Jean Claude N. Mbanya²³, K. M. Venkat Narayan⁶, Ambady Ramachandran²⁴, Alisha N. Wade²⁵, Tomasz Zdrojewski²⁶, Mohsen Abbasi-Kangevari²⁷, Hanan F. Abdul Rahim²⁸, Niveen M. Abu-Rmeileh²⁹, Shalkar Adambekov³⁰, Robert J. Adams³¹, Wichai Aekplakorn³², Imelda A. Agdeppa³³, Javad Aghazadeh-Attari³⁴, Charles Agyemang³⁵, Ali Ahmadi³⁶, Naser Ahmadi²⁷, Nastaran Ahmadi³⁷, Soheir H. Ahmed³⁸, Kamel Ajlouni³⁹, Halima Al-Hinai⁴⁰, Badreya Al-Lahou⁴¹, Jawad A. Al-Lawati⁴⁰, Deena Al Asfoor⁴², Nawal M. Al Qaoud⁴³, Monira Alarouj⁴⁴, Fadia AlBuhairan⁴⁵, Shahla AlDhukair⁴⁶, Maryam A. Aldwairji⁴³, Mohamed M. Ali⁸, Farbod Alinezhad⁴⁷, Abdullah Alkandari⁴⁴, Husam F. Alomirah⁴¹, Eman Aly⁴², Deepak N. Amarapurkar⁴⁸, Lars Bo Andersen⁴⁹, Sigmund A. Anderssen⁵⁰, Dolores S. Andrade⁵¹, Alireza Ansari-Moghaddam⁵², Hajer Aounallah-Skhiri⁵³, Tahir Aris¹⁴, Nimmathota Arlappa²², Krishna K. Aryal⁵⁴, Felix K. Assah²³, Batyrbek Assembekov¹⁶, Juha Auvinen^{55,56}, Mária Avdičová⁵⁷, Kishwar Azad⁵⁸, Mohsen Azimi-Nezhad⁵⁹, Fereidoun Azizi⁶⁰, Flora Bacopoulou⁶¹, Nagalla Balakrishna²², Mohamed Bamoshmoosh⁶², Maciej Banach⁶³, Piotr Bandosz²⁶, José R. Banegas⁶⁴, Carlo M. Barbagallo⁶⁵, Alberto Barceló⁶⁶, Maja Baretić⁶⁷, Lena Barrera⁶⁸, Abdul Basit⁶⁹, Anwar M. Batieha⁷⁰, Aline P. Batista⁷¹, Louise A. Baur⁷², Antonisamy Belavendra⁷³, Habiba Ben Romdhane⁷⁴, Mikhail Benet⁷⁵, Salim Berkinbayev⁷⁶, Antonio Bernabe-Ortiz⁷⁷, Ximena Berrios Carrasola⁷⁸, Heloísa Bettiol⁷⁹, Augustin F. Beybey²³, Santosh K. Bhargava⁸⁰, Elysée Claude Bika Lele⁸¹, Mukharram M. Bikbov⁸², Bihungum Bista⁸³, Peter Bjerregaard⁸⁴, Espen Bjertness³⁸, Marius B. Bjertness³⁸, Cecilia Björkelund⁸⁵, Katia V. Bloch⁸⁶,

Anneke Blokstra⁸⁷, Simona Bo⁸⁸, Martin Bobak⁸⁹, Jose G. Boggia⁹⁰, Marialaura Bonaccio⁹¹, Alice Bonilla-Vargas⁹², Herman Borghs⁹³, Pascal Bovet^{94,95}, Imperia Brajkovich⁹⁶, Hermann Brenner⁹⁷, Lizzy M. Brewster³⁵, Garry R. Brian⁹⁸, Yajaira Briceño⁹⁹, Miguel Brito¹⁰⁰, Anna Bugge¹⁰¹, Frank Buntinx⁹³, Antonio Cabrera de León¹⁰², Roberta B. Caixeta¹⁰³, Günay Can¹⁰⁴, Ana Paula C. Cândido¹⁰⁵, Mario V. Capanzana³³, Naděžda Čapková¹⁰⁶, Eduardo Capuano¹⁰⁷, Rocco Capuano¹⁰⁷, Vincenzo Capuano¹⁰⁷, Viviane C. Cardoso⁷⁹, Axel C. Carlsson¹⁰⁸, Felipe F. Casanueva¹⁰⁹, Laura Censi¹¹⁰, Marvin Cervantes-Loaiza⁹², Parinya Chamnan¹¹¹, Snehalatha Chamukuttan²⁴, Queenie Chan¹, Fadi J. Charchar¹¹², Nish Chaturvedi⁸⁹, Huashuai Chen¹¹³, Bahman Cheraghian¹¹⁴, María-Dolores Chirlague¹¹⁵, Jerzy Chudek¹¹⁶, Renata Cifkova^{117,118}, Massimo Cirillo¹¹⁹, Frank Claessens⁹³, Emmanuel Cohen¹²⁰, Hans Concin¹²¹, Cyrus Cooper¹²², Simona Costanzo⁹¹, Chris Cowell⁷², Ana B. Crujeiras¹²³, Juan J. Cruz⁶⁴, Felipe V. Cureau¹²⁴, Sarah Cuschieri¹²⁵, Graziella D'Arrigo¹²⁶, Eleonora d'Orsi¹²⁷, Jean Dallongeville¹²⁸, Albertino Damasceno¹²⁹, Saeed Dastgiri¹³⁰, Amalia De Curtis⁹¹, Giovanni de Gaetano⁹¹, Stefaan De Henauw¹³¹, Mohan Deepa¹⁵, Vincent Jr DeGennaro¹³², Stefaan Demarest¹³³, Elaine Dennison¹²², Valérie Deschamps¹³⁴, Meghnath Dhimal⁸³, Zivka Dika¹³⁵, Shirin Djalalinia¹³⁶, Chiara Donfrancesco¹³⁷, Guanghui Dong¹³⁸, Maria Dorobantu¹³⁹, Marcus Dörr¹⁴⁰, Nico Dragano¹⁴¹, Wojciech Drygas¹⁴², Yong Du¹⁴³, Charmaine A. Duante³³, Priscilla Duboz¹⁴⁴, Anar Dushpanova^{145,30}, Elzbieta Dziankowska-Zaborszczyk⁶³, Narges Ebrahimi²⁷, Ricky Eddie¹⁴⁶, Ebrahim Eftekhar¹⁴⁷, Vasiliki Efthymiou⁶¹, Eruke E. Egbagbe¹⁴⁸, Sareh Eghtesad¹⁷, Mohammad El-Khateeb³⁹, Jalila El Ati¹⁴⁹, Denise Eldemire-Shearer¹⁵⁰, Roberto Elosua^{151,152}, Ofem Enang¹⁵³, Rajiv T. Erasmus¹⁵⁴, Raimund Erbel¹⁵⁵, Cihangir Erem¹⁵⁶, Gul Ergor¹⁵⁷, Louise Eriksen⁸⁴, Johan G. Eriksson¹⁵⁸, Ali Esmaeili¹⁵⁹, Roger G. Evans¹⁶⁰, Ildar Fakhradiyev⁷⁶, Caroline H. Fall¹²², Elnaz Faramarzi⁴⁷, Mojtaba Farjam¹⁶¹, Yosef Farzi²⁷, Mohammad Reza Fattahi¹⁶², Asher Fawwad¹⁶³, Francisco J. Felix-Redondo¹⁶⁴, Trevor S. Ferguson¹⁵⁰, Daniel Fernández-Bergés¹⁶⁵, Marika Ferrari¹¹⁰, Catterina Ferreccio⁷⁸, Haroldo S. Ferreira¹⁶⁶, Eldridge Ferrer³³, Edith J. M. Feskens¹⁶⁷, David Flood¹⁶⁸, Maria Forsner¹⁶⁹, Sandrine Fosse¹³⁴, Edward F. Fottrell⁸⁹, Heba M. Fouad⁴²,

Damian K. Francis¹⁵⁰, Guillermo Frontera¹⁷⁰, Takuro Furusawa¹⁷¹, Zbigniew Gaciong¹⁷², Sarah P. Garnett⁷², Magda Gasull¹¹⁵, Andrea Gazzinelli¹⁷³, Ulrike Gehring¹⁷⁴, Ebrahim Ghaderi¹⁷⁵, Seyyed-Hadi Ghamari²⁷, Ali Ghanbari²⁷, Erfan Ghasemi²⁷, Oana-Florentina Gheorghe-Fronea¹³⁹, Anup Ghimire¹⁷⁶, Alessandro Gialluisi¹⁷⁷, Simona Giampaoli¹³⁷, Francesco Gianfagna^{177,178}, Tiffany K. Gill¹⁷⁹, Glen Gironella³³, Aleksander Giwercman¹⁸⁰, David Goltzman¹⁸¹, Aleksandra Gomula¹⁸², Helen Gonçalves¹⁸³, Mauer Gonçalves¹⁸⁴, David A. Gonzalez-Chica¹⁷⁹, Marcela Gonzalez-Gross¹⁸⁵, Juan P. González-Rivas¹⁸⁶, María-Elena González-Villalpando¹⁸⁷, Angel R. Gonzalez¹⁸⁸, Frederic Gottrand¹⁸⁹, Dušan Grafnetter¹⁹⁰, Tomasz Grodzicki¹⁹¹, Anders Grøntved¹⁹², Ramiro Guerrero¹⁹³, Unjali P. Gujral⁶, Rajeev Gupta¹⁹⁴, Laura Gutierrez¹⁹⁵, Xinyi Gwee¹⁹⁶, Rosa Haghshenas²⁷, Hamid Hakimi¹⁵⁹, Ian R. Hambleton¹⁹⁷, Behrooz Hamzeh¹⁹⁸, Willem A. Hanekom¹⁹⁹, Dominique Hange⁸⁵, Sari Hantunen²⁰⁰, Jie Hao²⁰¹, Rachakulla Hari Kumar²², Javad Harooni²⁰², Seyed Mohammad Hashemi-Shahri⁵², Jun Hata²⁰³, Christin Heidemann¹⁴³, Rafael dos Santos Henrique²⁰⁴, Sauli Herrala⁵⁵, Karl-Heinz Herzig^{56,55}, Ramin Heshmat²⁰⁵, Sai Yin Ho²⁰⁶, Michelle Holdsworth²⁰⁷, Reza Homayounfar²⁰⁸, Wilma M. Hopman²⁰⁹, Andrea R. V. R. Horimoto⁷⁹, Claudia Hormiga²¹⁰, Bernardo L. Horta¹⁸³, Leila Houti²¹¹, Christina Howitt¹⁹⁷, Thein Thein Htay²¹², Aung Soe Htet³⁸, Maung Maung Than Htike²¹³, José María Huerta¹¹⁵, Ilpo Tapani Huhtaniemi¹, Martijn Huisman²¹⁴, Abdullatif Husseini²⁹, Inge Huybrechts²¹⁵, Licia Iacoviello^{91,177}, Ellina M. lakupova⁸², Anna G. lannone¹⁰⁷, Norazizah Ibrahim Wong¹⁴, Chinwuba Ijoma²¹⁶, Vilma E. Irazola¹⁹⁵, Takafumi Ishida²¹⁷, Godsent C. Isiguzo²¹⁸, Sheikh Mohammed Shariful Islam²¹⁹, Duygu Islek⁶, Till Ittermann¹⁴⁰, Masanori Iwasaki²²⁰, Tuija Jääskeläinen²¹, Jeremy M. Jacobs²²¹, Hashem Y. Jaddou⁷⁰, Michel Jadoul²²², Bakary Jallow²²³, Kenneth James¹⁵⁰, Kazi M. Jamil²²⁴, Edward Janus²²⁵, Marjo-Riitta Jarvelin^{1,56}, Grazyna Jasienska¹⁹¹, Ana Jelaković⁶⁷, Bojan Jelaković¹³⁵, Garry Jennings²²⁶, Anjani Kumar Jha⁸³, Ramon O. Jimenez²²⁷, Karl-Heinz Jöckel¹⁵⁵, Jari J. Jokelainen⁵⁵, Jost B. Jonas²²⁸, Pradeep Joshi²²⁹, Josipa Josipović⁶⁷, Farahnaz Joukar²³⁰, Jacek Jóźwiak²³¹, Anthony Kafatos²³², Eero O. Kajantie²¹, Zhanna Kalmatayeva³⁰, Khem B. Karki²³³, Marzieh Katibeh²³⁴, Jussi Kauhanen²⁰⁰, Gyulli M. Kazakbaeva⁸², François F. Kaze²³, Calvin Ke²³⁵,

Sirkka Keinänen-Kiukaanniemi⁵⁵, Roya Kelishadi²³⁶, Maryam Keramati²³⁷, Mathilde Kersting²³⁸, Yousef Saleh Khader⁷⁰, Arsalan Khaledifar²³⁹, Davood Khalili²⁰⁸, Bahareh Kheiri²⁰⁸, Motahareh Kheradmand²⁴⁰, Alireza Khosravi²⁴¹, Ursula Kiechl-Kohlendorfer²⁴², Sophia J. Kiechl²⁴³, Stefan Kiechl^{242,243}, Andrew Kingston²⁴⁴, Heidi Klakk²⁴⁵, Jana Klanova²⁴⁶, Michael Knoflach²⁴², Patrick Kolsteren¹³¹, Jürgen König²⁴⁷, Raija Korpelainen⁵⁶, Paul Korrovits²⁴⁸, Jelena Kos⁶⁷, Seppo Koskinen²¹, Sudhir Kowlessur²⁴⁹, Slawomir Koziel¹⁸², Susi Kriemler²⁵⁰, Peter Lund Kristensen¹⁹², Daan Kromhout²⁵¹, Ruzena Kubinova¹⁰⁶, Urho M. Kujala²⁵², Mukhtar Kulimbet^{30,16}, Pawel Kurjata²⁵³, Catherine Kyobutungi²⁵⁴, Quang Ngoc La²⁵⁵, Demetre Labadarios^{256,257}, Carl Lachat¹³¹, Youcef Laid²⁵⁸, Lachmie Lall²⁵⁹, Tiina Lankila²⁶⁰, Vera Lanska¹⁹⁰, Georg Lappas²⁶¹, Bagher Larijani²⁶², Tint Swe Latt²⁶³, Martino Laurenzi²⁶⁴, Nils Lehmann¹⁵⁵, Terho Lehtimäki^{265,266}, Daniel Lemogoum²⁶⁷, Gabriel M. Leung²⁰⁶, Yanping Li³, M. Fernanda Lima-Costa²⁶⁸, Hsien-Ho Lin²⁶⁹, Lars Lind²⁷⁰, Lauren Lissner⁸⁵, Xiaotian Liu²⁷¹, Esther Lopez-Garcia⁶⁴, Tania Lopez²⁷², José Eugenio Lozano²⁷³, Dalia Luksiene²⁷⁴, Annamari Lundqvist²¹, Nuno Lunet²⁷⁵, Michala Lustigová^{117,106}, George L. L. Machado-Coelho⁷¹, Aristides M. Machado-Rodrigues²⁷⁶, Enguerran Macia¹⁴⁴, Luisa M. Macieira²⁷⁷, Ahmed A. Madar³⁸, Gladys E. Maestre²⁷⁸, Stefania Maggi²⁷⁹, Dianna J. Magliano⁴, Emmanuella Magriplis²⁸⁰, Gowri Mahasampath⁷³, Bernard Maire²⁰⁷, Marcia Makdisse²⁸¹, Mohammad-Reza Malekpour²⁷, Fatemeh Malekzadeh¹⁷, Reza Malekzadeh^{162,17}, Kodavanti Mallikharjuna Rao²², Sofia Malyutina²⁸², Lynell V. Maniego³³, Yannis Manios²⁸³, Masimango Imani Mannix²⁸⁴, Fariborz Mansour-Ghanaei²³⁰, Enzo Manzato²⁸⁵, Paula Margozzini⁷⁸, Joany Mariño¹⁴⁰, Larissa Pruner Marques²⁸⁶, Reynaldo Martorell⁶, Luis P. Mascarenhas²⁸⁷, Masoud Masinaei²⁷, Ellisiv B. Mathiesen²⁸⁸, Tandi E. Matsha²⁸⁹, Anselmo J. Mc Donald Posso²⁹⁰, Shelly R. McFarlane¹⁵⁰, Stephen T. McGarvey²⁹¹, Sounnia Mediene Benchekor²¹¹, Kirsten Mehlig⁸⁵, Amir Houshang Mehrparvar²⁹², Jesus D. Melgarejo²⁷⁸, Fabián Méndez⁶⁸, Ana Maria B. Menezes¹⁸³, Alibek Mereke²⁹³, Indrapal I. Meshram²², Diane T. Meto²⁹⁴, Cláudia S. Minderico²⁹⁵, G. K. Mini²⁹⁶, Juan Francisco Miquel⁷⁸, J. Jaime Miranda⁷⁷, Mohammad Reza Mirjalili²⁹², Pietro A. Modesti²⁹⁷, Sahar Saeedi Moghaddam²⁷, Mostafa K. Mohamed²⁹⁸,

Kazem Mohammad¹⁷, Mohammad Reza Mohammadi²⁹⁹, Zahra Mohammadi¹⁷, Noushin Mohammadifard³⁰⁰, Reza Mohammadpourhodki²³⁷, Viswanathan Mohan¹⁵, Muhammad Fadhli Mohd Yusoff¹⁴, Iraj Mohebbi³⁴, Niels C. Møller¹⁹², Dénes Molnár³⁰¹, Amirabbas Momenan²⁰⁸, Charles K. Mondo³⁰², Roger A. Montenegro Mendoza³⁰³, Eric Monterrubio-Flores¹⁸, Mahmood Moosazadeh²⁴⁰, Farhad Moradpour¹⁷⁵, Alain Morejon³⁰⁴, Luis A. Moreno^{305,123}, Karen Morgan², Suzanne N. Morin¹⁸¹, Alireza Moslem³⁰⁶, Mildrey Mosquera⁶⁸, Malgorzata Mossakowska³⁰⁷, Aya Mostafa²⁹⁸, Seyed-Ali Mostafavi¹⁷, Mohammad Esmaeel Motlagh¹¹⁴, Jorge Motta²⁹⁰, Kelias P. Msyamboza³⁰⁸, Thet Thet Mu³⁰⁹, Maria L. Muiesan³¹⁰, Jaakko Mursu²⁰⁰, Kamarul Imran Musa³¹¹, Norlaila Mustafa³¹², Muel Telo M. C. Muyer³¹³, Iraj Nabipour³¹⁴, Gabriele Nagel³¹⁵, Balkish M. Naidu³¹⁶, Farid Najafi¹⁹⁸, Jana Námešná⁵⁷, Vinay B. Nangia³¹⁷, Take Naseri³¹⁸, Nareemarn Neelapaichit³¹⁹, Azim Nejatizadeh¹⁴⁷, Ilona Nenko¹⁹¹, Flavio Nervi⁷⁸, Tze Pin Ng¹⁹⁶, Chung T. Nguyen³²⁰, Quang Ngoc Nguyen³²¹, Michael Y. Ni²⁰⁶, Peng Nie³²², Ramfis E. Nieto-Martínez³²³, Toshiharu Ninomiya²⁰³, Marianna Noale²⁷⁹, Oscar A. Noboa⁹⁰, Davide Noto⁶⁵, Mohannad Al Nsour³²⁴, Irfan Nuhoğlu¹⁵⁶, Terence W. O'Neill³²⁵, Augustine N. Odili³²⁶, Kyungwon Oh³²⁷, Ryutaro Ohtsuka³²⁸, Mohd Azahadi Omar¹⁴, Altan Onat^{329,423}, Sok King Ong³³⁰, Obinna Onodugo²¹⁶, Pedro Ordunez¹⁰³, Rui Ornelas³³¹, Pedro J. Ortiz⁷⁷, Clive Osmond¹²², Afshin Ostovar³³², Johanna A. Otero³³³, Charlotte Ottendahl⁸⁴, Akaninyene Otu¹⁵³, Ellis Owusu-Dabo³³⁴, Luigi Palmieri¹³⁷, Wen-Harn Pan³³⁵, Songhomitra Panda-Jonas³³⁶, Francesco Panza³³⁷, Mariela Paoli⁹⁹, Suyeon Park³²⁷, Mahboubeh Parsaeian¹⁷, Nikhil D. Patel³³⁸, Raimund Pechlaner²⁴², Ivan Pećin⁶⁷, João M. Pedro³³⁹, Sergio Viana Peixoto²⁶⁸, Markku Peltonen²¹, Alexandre C. Pereira⁷⁹, Thaliane Mayara Pessôa dos Prazeres²⁰⁴, Niloofar Peykari¹³⁶, Modou Cheyassin Phall²²³, Son Thai Pham³⁴⁰, Hiep Hoang Phan³⁴¹, Rafael N. Pichardo³⁴², Hynek Pikhart⁸⁹, Aida Pilav³⁴³, Pavel Piler²⁴⁶, Freda Pitakaka³⁴⁴, Aleksandra Piwonska²⁵³, Andreia n Pizarro²⁷⁵, Pedro Plans-Rubió³⁴⁵, Silvia Plata³⁴⁶, Miquel Porta¹⁵¹, Anil Poudyal⁸³, Farhad Pourfarzi³⁴⁷, Akram Pourshams¹⁷, Hossein Poustchi¹⁷, Rajendra Pradeepa¹⁵, Rui Providencia⁸⁹, Jardena J. Puder³⁴⁸, Solie Puhakka²⁶⁰, Margus Punab²⁴⁸, Mostafa Qorbani³⁴⁹, Hedley K. Quintana³⁰³, Tran Quoc Bao³⁵⁰, Salar

Rahimikazerooni¹⁶², Olli Raitakari³⁵¹, Manuel Ramirez³⁵², Jacqueline Ramke¹⁰, Rafel Ramos³⁵³, Lekhraj Rampal³⁵⁴, Sanjay Rampal³⁵⁵, Daniel A. Rangel Reina²⁹⁰, Mohammad-Mahdi Rashidi²⁷, Josep Redon³⁵⁶, Jane D. P. Renner³⁵⁷, Cézane P. Reuter³⁵⁷, Luis Revilla²⁷², Negar Rezaei²⁷, Abbas Rezaianzadeh¹⁶², Fernando Rigo³⁵⁸, Reina G. Roa³⁵⁹, Louise Robinson²⁴⁴, Fernando Rodríguez-Artalejo⁶⁴, María del Cristo Rodriguez-Perez³⁶⁰, Laura A. Rodríguez-Villamizar³⁶¹, Andrea Y. Rodríguez³⁶², Ulla Roggenbuck¹⁵⁵, Peter Rohloff¹⁶⁸, Elisabetta L. Romeo³⁶³, Annika Rosengren^{85,364}, Adolfo Rubinstein¹⁹⁵, Petra Rust²⁴⁷, Marcin Rutkowski²⁶, Hamideh Sabbaghi²⁰⁸, Harshpal S. Sachdev³⁶⁵, Alireza Sadjadi¹⁷, Ali Reza Safarpour¹⁶², Sare Safi²⁰⁸, Saeid Safiri⁴⁷, Mohammad Hossien Saghi³⁰⁶, Olfa Saidi⁷⁴, Nader Saki¹¹⁴, Sanja Šalaj³⁶⁶, Benoit Salanave¹³⁴, Jukka T. Salonen¹⁵⁸, Massimo Salvetti³¹⁰, Jose Sánchez-Abanto³⁶⁷, Diana A. Santos²⁹⁵, Lèlita C. Santos²⁷⁷, Maria Paula Santos²⁷⁵, Tamara R. Santos¹⁶⁶, Jouko L. Saramies³⁶⁸, Luis B. Sardinha²⁹⁵, Nizal Sarrafzadegan³⁰⁰, Kai-Uwe Saum⁹⁷, Mariana Sbaraini³⁶⁹, Marcia Scazufca³⁷⁰, Beatriz D. Schaan³⁶⁹, Christa Scheidt-Nave¹⁴³, Sabine Schipf¹⁴⁰, Carsten O. Schmidt¹⁴⁰, Ben Schöttker⁹⁷, Sara Schramm¹⁵⁵, Sylvain Sebert⁵⁶, Moslem Sedaghattalab²⁰², Aye Aye Sein²¹³, Sadaf G. Sepanlou¹⁷, Ronel Sewpaul³⁷¹, Teresa Shamah-Levy¹⁸, Seyed Morteza Shamshirgaran⁵⁹, Maryam Sharafkhah¹⁷, Sanjib K. Sharma¹⁷⁶, Almaz Sharman³⁷², Amaneh Shayanrad¹⁷, Ali Akbar Shayesteh¹¹⁴, Hana Shimizu-Furusawa³⁷³, Rahman Shiri³⁷⁴, Namuna Shrestha³⁷⁵, Khairil Si-Ramlee³³⁰, Diego Augusto Santos Silva¹²⁷, Mary Simon²⁴, Judith Simons³⁷⁶, Leon A. Simons³⁷⁷, Michael Sjöström^{378,423}, Jolanta Slowikowska-Hilczer⁶³, Przemysław Slusarczyk³⁰⁷, Liam Smeeth³⁷⁹, Eugène Sobngwi²³, Stefan Söderberg¹⁶⁹, Agustinus Soemantri^{380,423}, Reecha Sofat⁸⁹, Vincenzo Solfrizzi³⁸¹, Mohammad Hossein Somi⁴⁷, Aïcha Soumaré³⁸², Alfonso Sousa-Poza³⁸³, Karen Sparrenberger³⁶⁹, Jan A. Staessen⁹³, Bill Stavreski²²⁶, Jostein Steene-Johannessen⁵⁰, Peter Stehle³⁸⁴, Aryeh D. Stein⁶, Jochanan Stessman²²¹, Jakub Stokwiszewski³⁸⁵, Karien Stronks³⁵, Milton F. Suarez-Ortegón³⁸⁶, Phalakorn Suebsamran³⁸⁷, Johan Sundström²⁷⁰, Paibul Suriyawongpaisal³², René Charles Sylva³⁸⁸, Moyses Szklo³⁸⁹, Abdonas Tamosiunas²⁷⁴, Mohammed Rasoul Tarawneh³⁹⁰, Carolina B. Tarqui-Mamani³⁶⁷, Anne

41

Taylor¹⁷⁹, Julie Taylor⁸⁹, Tania Tello⁷⁷, K. R. Thankappan³⁹¹, Holger Theobald¹⁰⁸, Xenophon Theodoridis³⁹², Nihal Thomas⁷³, Amanda G. Thrift¹⁶⁰, Erik J. Timmermans³⁹³, Dwi H. Tjandrarini³⁹⁴, Hanna K. Tolonen²¹, Janne S. Tolstrup⁸⁴, Maciej Tomaszewski³²⁵, Murat Topbas¹⁵⁶, Laura Torres-Collado³⁹⁵, Pierre Traissac²⁰⁷, Areti Triantafyllou³⁹², John Tuitele^{396,397}, Azaliia M. Tuliakova⁸², Marshall K. Tulloch-Reid¹⁵⁰, Tomi-Pekka Tuomainen²⁰⁰, Evangelia Tzala¹, Christophe Tzourio³⁸², Peter Ueda³⁷⁸, Eunice Ugel³⁹⁸, Flora A. M. Ukoli³⁹⁹, Hanno Ulmer²⁴², Hannu M. T. Uusitalo⁴⁰⁰, Gonzalo Valdivia⁷⁸, Bert-Jan van den Born³⁵, Johan Van der Heyden¹³³, Hoang Van Minh²⁵⁵, Lenie van Rossem³⁹³, Natasja M. Van Schoor²¹⁴, Irene G. M. van Valkengoed³⁵, Elisabeth M. van Zutphen²¹⁴, Dirk Vanderschueren⁹³, Diego Vanuzzo⁴⁰¹, Senthil K. Vasan¹²², Tomas Vega²⁷³, Gustavo Velasquez-Melendez¹⁷³, Roosmarijn Verstraeten⁴⁰², Lucie Viet⁸⁷, Salvador Villalpando¹⁸, Jesus Vioque⁴⁰³, Jyrki K. Virtanen²⁰⁰, Bharathi Viswanathan⁹⁴, Ari Voutilainen²⁰⁰, Wan Mohamad Wan Bebakar³¹¹, Wan Nazaimoon Wan Mohamud⁴⁰⁴, Chongjian Wang²⁷¹, Ningli Wang⁴⁰⁵, Qian Wang⁴⁰⁶, Ya Xing Wang⁴⁰⁷, Ying-Wei Wang⁴⁰⁸, S. Goya Wannamethee⁸⁹, Karen Webster-Kerr⁴⁰⁹, Niels Wedderkopp¹⁹², Wenbin Wei⁴⁰⁷, Leo D. Westbury¹²², Peter H. Whincup⁴¹⁰, Kurt Widhalm⁴¹¹, Indah S. Widyahening⁴¹², Andrzej Więcek¹¹⁶, Rainford J. Wilks¹⁵⁰, Johann Willeit²⁴², Peter Willeit²⁴², Tom Wilsgaard²⁸⁸, Bogdan Wojtyniak³⁸⁵, Andrew Wong⁸⁹, Emily B. Wong¹⁹⁹, Mark Woodward^{377,1}, Frederick C. Wu³²⁵, Haiquan Xu⁴¹³, Liang Xu⁴¹⁴, Nor Azwany Yaacob³¹¹, Li Yan¹, Weili Yan⁴¹⁵, Moein Yoosefi²⁷, Akihiro Yoshihara⁴¹⁶, Novie O. Younger-Coleman¹⁵⁰, Yu-Ling Yu⁹³, Yunjiang Yu⁴¹⁷, Ahmad Faudzi Yusoff¹⁴, Ahmad A. Zainuddin¹⁴, Farhad Zamani⁴¹⁸, Sabina Zambon²⁸⁵, Antonis Zampelas²⁸⁰, Ko Ko Zaw²⁶³, Tajana Zeljkovic Vrkic⁶⁷, Yi Zeng^{419,420}, Zhen-Yu Zhang⁹³, Bekbolat Zholdin⁴²¹, Paul Zimmet¹⁶⁰, Emanuel Zitt¹²¹, Nada Zoghlami⁵³, Julio Zuñiga Cisneros²⁹⁰, Majid Ezzati^{1,422}

¹Imperial College London, London, UK.

²RCSI University of Medicine and Health Sciences, Dublin, Ireland.

³Harvard T. H. Chan School of Public Health, Boston, MA, USA.

⁴Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. ⁵Bill & Melinda Gates Foundation, Seattle, WA, USA. ⁶Emory University, Atlanta, GA, USA. ⁷South African Medical Research Council, Cape Town, South Africa. ⁸World Health Organization, Geneva, Switzerland. ⁹University of California Berkeley, Berkeley, CA, USA. ¹⁰University of Auckland, Auckland, New Zealand. ¹¹Yale School of Public Health, New Haven, CT, USA. ¹²US Centres for Disease Control and Prevention, Atlanta, GA, USA. ¹³Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico. ¹⁴Ministry of Health, Kuala Lumpur, Malaysia. ¹⁵Madras Diabetes Research Foundation, Chennai, India. ¹⁶Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan. ¹⁷Tehran University of Medical Sciences, Tehran, Iran. ¹⁸National Institute of Public Health, Cuernavaca, Mexico. ¹⁹Seoul National University College of Medicine, Seoul, Republic of Korea. ²⁰Yonsei University College of Medicine, Seoul, Republic of Korea. ²¹Finnish Institute for Health and Welfare, Helsinki, Finland. ²²ICMR - National Institute of Nutrition, Hyderabad, India. ²³University of Yaoundé 1, Yaoundé, Cameroon. ²⁴India Diabetes Research Foundation, Chennai, India. ²⁵University of the Witwatersrand, Johannesburg, South Africa. ²⁶Medical University of Gdansk, Gdansk, Poland. ²⁷Non-Communicable Diseases Research Center, Tehran, Iran. ²⁸Qatar University, Doha, Qatar. ²⁹Birzeit University, Birzeit, State of Palestine.

³⁰Al-Farabi Kazakh National University, Almaty, Kazakhstan. ³¹Flinders University, Adelaide, South Australia, Australia. ³²Mahidol University, Nakhon Pathom, Thailand. ³³Food and Nutrition Research Institute, Taguig, The Philippines. ³⁴Urmia University of Medical Sciences, Urmia, Iran. ³⁵University of Amsterdam, Amsterdam, The Netherlands. ³⁶Modeling in Health Research Center, Shahrekord, Iran. ³⁷Shahid Sadoughi University of Medical Sciences, Yazd, Iran. ³⁸University of Oslo, Oslo, Norway. ³⁹National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan. ⁴⁰Ministry of Health, Muscat, Oman. ⁴¹Kuwait Institute for Scientific Research, Kuwait City, Kuwait. ⁴²World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt. ⁴³Ministry of Health, Kuwait City, Kuwait. ⁴⁴Dasman Diabetes Institute, Kuwait City, Kuwait. ⁴⁵Aldara Hospital and Medical Center, Riyadh, Saudi Arabia. ⁴⁶King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. ⁴⁷Tabriz University of Medical Sciences, Tabriz, Iran. ⁴⁸Bombay Hospital and Medical Research Centre, Mumbai, India. ⁴⁹Western Norway University of Applied Sciences, Sogndal, Norway. ⁵⁰Norwegian School of Sport Sciences, Oslo, Norway. ⁵¹Universidad de Cuenca, Cuenca, Ecuador. ⁵²Zahedan University of Medical Sciences, Zahedan, Iran. ⁵³National Institute of Public Health, Tunis, Tunisia. ⁵⁴University of Bergen, Bergen, Norway. ⁵⁵Oulu University Hospital, Oulu, Finland.

⁵⁶University of Oulu, Oulu, Finland.

⁵⁷Regional Authority of Public Health, Banska Bystrica, Slovakia. ⁵⁸Diabetic Association of Bangladesh, Dhaka, Bangladesh. ⁵⁹Neyshabur University of Medical Sciences, Neyshabur, Iran. ⁶⁰Research Institute for Endocrine Sciences, Tehran, Iran. ⁶¹National and Kapodistrian University of Athens, Athens, Greece. ⁶²University of Science and Technology, Sana'a, Yemen. ⁶³Medical University of Lodz, Lodz, Poland. ⁶⁴Universidad Autónoma de Madrid CIBERESP, Madrid, Spain. ⁶⁵University of Palermo, Palermo, Italy. ⁶⁶University of Miami, Miami, FL, USA. ⁶⁷University Hospital Centre Zagreb, Zagreb, Croatia. ⁶⁸Universidad del Valle, Cali, Colombia. ⁶⁹Bagai Institute of Diabetology and Endocrinology, Karachi, Pakistan. ⁷⁰Jordan University of Science and Technology, Irbid, Jordan. ⁷¹Universidade Federal de Ouro Preto, Ouro Preto, Brazil. ⁷²University of Sydney, Sydney, New South Wales, Australia. ⁷³Christian Medical College Vellore, Vellore, India. ⁷⁴University Tunis El Manar, Tunis, Tunisia. ⁷⁵Cafam University Foundation, Bogotá, Colombia. ⁷⁶Kazakh National Medical University, Almaty, Kazakhstan. ⁷⁷Universidad Peruana Cayetano Heredia, Lima, Peru. ⁷⁸Pontificia Universidad Católica de Chile, Santiago, Chile. ⁷⁹University of São Paulo, São Paulo, Brazil. ⁸⁰Sunder Lal Jain Hospital, Delhi, India. ⁸¹Institute of Medical Research and Medicinal Plant Studies, Yaoundé, Cameroon. ⁸²Ufa Eye Research Institute, Ufa, Russia. ⁸³Nepal Health Research Council, Kathmandu, Nepal. ⁸⁴University of Southern Denmark, Copenhagen, Denmark. ⁸⁵University of Gothenburg, Gothenburg, Sweden. ⁸⁶Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. ⁸⁷National Institute for Public Health and the Environment, Bilthoven, The Netherlands. ⁸⁸University of Turin, Turin, Italy. ⁸⁹University College London, London, UK. ⁹⁰Universidad de la República, Montevideo, Uruguay. ⁹¹IRCCS Neuromed, Pozzilli, Italy. ⁹²Caja Costarricense de Seguro Social, San José, Costa Rica. ⁹³KU Leuven, Leuven, Belgium. ⁹⁴Ministry of Health, Victoria, Seychelles. ⁹⁵University of Lausanne, Lausanne, Switzerland. ⁹⁶Universidad Central de Venezuela, Caracas, Venezuela. ⁹⁷German Cancer Research Center, Heidelberg, Germany. ⁹⁸The Fred Hollows Foundation, Auckland, New Zealand. ⁹⁹University of the Andes, Mérida, Venezuela. ¹⁰⁰Instituto Politécnico de Lisboa, Lisbon, Portugal. ¹⁰¹University College Copenhagen, Copenhagen, Denmark. ¹⁰²Universidad de La Laguna, Tenerife, Spain. ¹⁰³Pan American Health Organization, Washington, DC, USA. ¹⁰⁴Istanbul University - Cerrahpasa, Istanbul, Turkey. ¹⁰⁵Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil. ¹⁰⁶National Institute of Public Health, Prague, Czech Republic. ¹⁰⁷Gaetano Fucito Hospital, Mercato San Severino, Italy.

¹⁰⁸Karolinska Institutet, Huddinge, Sweden.

¹⁰⁹Santiago de Compostela University, Santiago de Compostela, Spain.

¹¹⁰Council for Agricultural Research and Economics, Rome, Italy.

¹¹¹Sanpasitthiprasong Hospital, Ubon, Thailand.

¹¹²Federation University Australia, Ballarat, Victoria, Australia.

¹¹³Xiangtan University, Xiangtan, China.

¹¹⁴Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

¹¹⁵CIBERESP, Madrid, Spain.

¹¹⁶Medical University of Silesia, Katowice, Poland.

¹¹⁷Charles University, Prague, Czech Republic.

¹¹⁸Thomayer University Hospital, Prague, Czech Republic.

¹¹⁹University of Salerno, Fisciano, Italy.

¹²⁰UMR CNRS-MNHN 7206, Marseille, France.

¹²¹Agency for Preventive and Social Medicine, Bregenz, Austria.

¹²²University of Southampton, Southampton, UK.

¹²³CIBEROBN, Madrid, Spain.

¹²⁴Universidade Federal do Rio Grande do Norte, Natal, Brazil.

¹²⁵University of Malta, Msida, Malta.

¹²⁶National Research Council, Reggio Calabria, Italy.

¹²⁷Federal University of Santa Catarina, Florianópolis, Brazil.

¹²⁸Institut Pasteur de Lille, Lille, France.

¹²⁹Eduardo Mondlane University, Maputo, Mozambique.

¹³⁰Tabriz Health Services Management Research Center, Tabriz, Iran.

¹³¹Ghent University, Ghent, Belgium.

¹³²Innovating Health International, Port-au-Prince, Haiti.

¹³³Sciensano, Brussels, Belgium.

¹³⁴French Public Health Agency, St Maurice, France.

¹³⁵University of Zagreb, Zagreb, Croatia.

¹³⁶Ministry of Health and Medical Education, Tehran, Iran.

¹³⁷Istituto Superiore di Sanità, Rome, Italy.

¹³⁸Sun Yat-sen University, Guangzhou, China.

¹³⁹Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

¹⁴⁰University Medicine Greifswald, Greifswald, Germany.

¹⁴¹University Hospital Düsseldorf, Düsseldorf, Germany.

¹⁴²Lazarski University, Warsaw, Poland.

¹⁴³Robert Koch Institute, Berlin, Germany.

¹⁴⁴IRL 3189 ESS, Marseille, France.

¹⁴⁵Scuola Superiore Sant'Anna, Pisa, Italy.

¹⁴⁶Ministry of Health and Medical Services, Gizo, Solomon Islands.

¹⁴⁷Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

¹⁴⁸University of Benin, Benin City, Nigeria.

¹⁴⁹National Institute of Nutrition and Food Technology, Tunis, Tunisia.

¹⁵⁰The University of the West Indies, Kingston, Jamaica.

¹⁵¹Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.

¹⁵²CIBERCV, Barcelona, Spain.

¹⁵³University of Calabar, Calabar, Nigeria.

¹⁵⁴University of Stellenbosch, Cape Town, South Africa.

¹⁵⁵University of Duisburg-Essen, Duisburg, Germany.

¹⁵⁶Karadeniz Technical University, Trabzon, Turkey.

¹⁵⁷Dokuz Eylul University, Izmir, Turkey.

¹⁵⁸University of Helsinki, Helsinki, Finland.

¹⁵⁹Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

¹⁶⁰Monash University, Melbourne, Victoria, Australia. ¹⁶¹Fasa University of Medical Sciences, Fasa, Iran. ¹⁶²Shiraz University of Medical Sciences, Shiraz, Iran. ¹⁶³Bagai Medical University, Karachi, Pakistan. ¹⁶⁴Centro de Salud Villanueva Norte, Badajoz, Spain. ¹⁶⁵Hospital Don Benito-Villanueva de la Serena, Badajoz, Spain. ¹⁶⁶Federal University of Alagoas, Maceió, Brazil. ¹⁶⁷Wageningen University, Wageningen, The Netherlands. ¹⁶⁸Wuqu' Kawoq, Tecpan, Guatemala. ¹⁶⁹Umeå University, Umeå, Sweden. ¹⁷⁰Hospital Universitario Son Espases, Palma, Spain. ¹⁷¹Kyoto University, Kyoto, Japan. ¹⁷²Medical University of Warsaw, Warsaw, Poland. ¹⁷³Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. ¹⁷⁴Utrecht University, Utrecht, The Netherlands. ¹⁷⁵Kurdistan University of Medical Sciences, Sanandaj, Iran. ¹⁷⁶B. P. Koirala Institute of Health Sciences, Dharan, Nepal. ¹⁷⁷University of Insubria, Varese, Italy. ¹⁷⁸Mediterranea Cardiocentro, Naples, Italy. ¹⁷⁹University of Adelaide, Adelaide, South Australia, Australia. ¹⁸⁰Lund University, Lund, Sweden. ¹⁸¹McGill University, Montreal, Québec, Canada. ¹⁸²PASs Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland. ¹⁸³Federal University of Pelotas, Pelotas, Brazil. ¹⁸⁴University Agostinho Neto, Luanda, Angola. ¹⁸⁵Universidad Politécnica de Madrid, Madrid, Spain.

¹⁸⁶International Clinical Research Center, Brno, Czech Republic.

¹⁸⁷Centro de Estudios en Diabetes A.C., Mexico City, Mexico.

¹⁸⁸Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic.

¹⁸⁹University of Lille, Lille, France.

¹⁹⁰Institute for Clinical and Experimental Medicine, Prague, Czech Republic.

¹⁹¹Jagiellonian University Medical College, Kraków, Poland.

¹⁹²University of Southern Denmark, Odense, Denmark.

¹⁹³Universidad Icesi, Cali, Colombia.

¹⁹⁴Eternal Heart Care Centre and Research Institute, Jaipur, India.

¹⁹⁵Institute for Clinical Effectiveness and Health Policy, Buenos Aires, Argentina.

¹⁹⁶National University of Singapore, Singapore, Singapore.

¹⁹⁷The University of the West Indies, Cave Hill, Barbados.

¹⁹⁸Kermanshah University of Medical Sciences, Kermanshah, Iran.

¹⁹⁹Africa Health Research Institute, Durban, South Africa.

²⁰⁰University of Eastern Finland, Kuopio, Finland.

²⁰¹Capital Medical University, Beijig, China.

²⁰²Yasuj University of Medical Sciences, Yasuj, Iran.

²⁰³Kyushu University, Fukuoka, Japan.

²⁰⁴Federal University of Pernambuco, Recife, Brazil.

²⁰⁵Chronic Diseases Research Center, Tehran, Iran.

²⁰⁶University of Hong Kong, Hong Kong, China.

²⁰⁷French National Research Institute for Sustainable Development, Montpellier, France.

²⁰⁸Shahid Beheshti University of Medical Sciences, Tehran, Iran.

²⁰⁹Kingston Health Sciences Centre, Kingston, Ontario, Canada.

²¹⁰Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia.

²¹¹University Oran 1, Oran, Algeria.

²¹²Independent Public Health Specialist, Nay Pyi Taw, Myanmar. ²¹³Ministry of Health and Sports, Nay Pyi Taw, Myanmar. ²¹⁴VU University Medical Center, Amsterdam, The Netherlands. ²¹⁵International Agency for Research on Cancer, Lyon, France. ²¹⁶College of Medicine, University of Nigeria, Ituku-Ozalla, Enugu, Nigeria. ²¹⁷The University of Tokyo, Tokyo, Japan. ²¹⁸Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria. ²¹⁹Deakin University, Geelong, Victoria, Australia. ²²⁰Hokkaido University, Sapporo, Japan. ²²¹Hadassah University Medical Center, Jerusalem, Israel. ²²²Université Catholique de Louvain, Brussels, Belgium. ²²³Gambia National Nutrition Agency, Banjul, The Gambia. ²²⁴Kuwait Institute for Scientific Research, Safat, Kuwait. ²²⁵University of Melbourne, Melbourne, Victoria, Australia. ²²⁶Heart Foundation, Melbourne, Victoria, Australia. ²²⁷Universidad Eugenio Maria de Hostos, Santo Domingo, Dominican Republic. ²²⁸Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland. ²²⁹World Health Organization Country Office, Delhi, India. ²³⁰Guilan University of Medical Sciences, Rasht, Iran. ²³¹University of Opole, Opole, Poland. ²³²University of Crete, Heraklion, Greece. ²³³Maharajgunj Medical Campus, Kathmandu, Nepal. ²³⁴Aarhus University, Aarhus, Denmark. ²³⁵University of Toronto, Toronto, Ontario, Canada. ²³⁶Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran. ²³⁷Mashhad University of Medical Sciences, Mashhad, Iran.

²³⁸Research Institute of Child Nutrition, Dortmund, Germany. ²³⁹Shahrekord University of Medical Sciences, Shahrekord, Iran. ²⁴⁰Mazandaran University of Medical Sciences, Sari, Iran. ²⁴¹Hypertension Research Center, Isfahan, Iran. ²⁴²Medical University of Innsbruck, Innsbruck, Austria. ²⁴³VASCage, Innsbruck, Austria. ²⁴⁴Newcastle University, Newcastle, UK. ²⁴⁵University College South Denmark, Haderslev, Denmark. ²⁴⁶Masaryk University, Brno, Czech Republic. ²⁴⁷University of Vienna, Vienna, Austria. ²⁴⁸Tartu University Clinics, Tartu, Estonia. ²⁴⁹Ministry of Health and Wellness, Port Louis, Mauritius. ²⁵⁰University of Zurich, Zurich, Switzerland. ²⁵¹University of Groningen, Groningen, The Netherlands. ²⁵²University of Jyväskylä, Jyväskylä, Finland. ²⁵³National Institute of Cardiology, Warsaw, Poland. ²⁵⁴African Population and Health Research Center, Nairobi, Kenya. ²⁵⁵Hanoi University of Public Health, Hanoi, Vietnam. ²⁵⁶University of Limpopo, Polokwane, South Africa. ²⁵⁷Stellennbosch University, Polokwane, South Africa. ²⁵⁸Ministry of Health, Algiers, Algeria. ²⁵⁹Ministry of Health, Georgetown, Guyana. ²⁶⁰Oulu Deaconess Institute Foundation, Oulu, Finland. ²⁶¹Sahlgrenska Academy, Gothenburg, Sweden. ²⁶²Endocrinology and Metabolism Research Center, Tehran, Iran. ²⁶³University of Public Health, Yangon, Myanmar.

²⁶⁴Centro Studi Epidemiologici di Gubbio, Gubbio, Italy.

²⁶⁵Tampere University Hospital, Tampere, Finland.

²⁶⁶Tampere University, Tampere, Finland.

²⁶⁷University of Douala, Douala, Cameroon.

²⁶⁸Oswaldo Cruz Foundation Rene Rachou Research Institute, Belo Horizonte, Brazil.

²⁶⁹National Taiwan University, Taipei, Taiwan.

²⁷⁰Uppsala University, Uppsala, Sweden.

²⁷¹Zhengzhou University, Zhengzhou, China.

²⁷²Universidad San Martín de Porres, Lima, Peru.

²⁷³Consejería de Sanidad Junta de Castilla y León, Valladolid, Spain.

²⁷⁴Lithuanian University of Health Sciences, Kaunas, Lithuania.

²⁷⁵University of Porto, Porto, Portugal.

²⁷⁶University of Coimbra, Coimbra, Portugal.

²⁷⁷Coimbra University Hospital Center, Coimbra, Portugal.

²⁷⁸University of Texas Rio Grande Valley, Harlingen, TX, USA.

²⁷⁹Institute of Neuroscience of the National Research Council, Padua, Italy.

²⁸⁰Agricultural University of Athens, Athens, Greece.

²⁸¹Academia VBHC, São Paulo, Brazil.

²⁸²Institute of Internal and Preventive Medicine, Novosibirsk, Russia.

²⁸³Harokopio University, Athens, Greece.

²⁸⁴Université Catholique de Bukavu, Bukavu, DR Congo.

²⁸⁵University of Padua, Padua, Italy.

²⁸⁶Secretaria de Estado da Saúde de Santa Catarina, Florianópolis, Brazil.

²⁸⁷Universidade Estadual do Centro-Oeste, Guarapuava, Brazil.

²⁸⁸UiT The Arctic University of Norway, Tromsø, Norway.

²⁸⁹Sefako Makgatho Health Sciences University, Pretoria, South Africa.

²⁹⁰Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama. ²⁹¹Brown University, Providence, RI, USA. ²⁹²Shahid Sadoughi University of Medical Sciences, Tehran, Iran. ²⁹³Al-Farabi Kazakh National University, Almaty, Kazakhstan. ²⁹⁴University of Abidjan, Abidjan, Côte d'Ivoire. ²⁹⁵Universidade de Lisboa, Lisbon, Portugal. ²⁹⁶Saveetha Institute of Medical and Technical Sciences, Chennai, India. ²⁹⁷Università degli Studi di Firenze, Florence, Italy. ²⁹⁸Ain Shams University, Cairo, Egypt. ²⁹⁹Psychiatry and Psychology Research Center, Tehran, Iran. ³⁰⁰Isfahan Cardiovascular Research Center, Isfahan, Iran. ³⁰¹University of Pécs, Pécs, Hungary. ³⁰²Mulago Hospital, Kampala, Uganda. ³⁰³Gorgas Memorial Institute for Studies of Health, Panama City, Panama. ³⁰⁴University of Medical Sciences of Cienfuegos, Cienfuegos, Cuba. ³⁰⁵University of Zaragoza, Zaragoza, Spain. ³⁰⁶Sabzevar University of Medical Sciences, Sabzevar, Iran. ³⁰⁷International Institute of Molecular and Cell Biology, Warsaw, Poland. ³⁰⁸World Health Organization Country Office, Lilongwe, Malawi. ³⁰⁹Department of Public Health, Nay Pyi Taw, Myanmar. ³¹⁰University of Brescia, Brescia, Italy. ³¹¹Universiti Sains Malaysia, Kelantan, Malaysia. ³¹²Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. ³¹³University de Kinshasa, Kinshasa, DR Congo. ³¹⁴Bushehr University of Medical Sciences, Bushehr, Iran. ³¹⁵Ulm University, Ulm, Germany.

³¹⁶Department of Statistics, Kuala Lumpur, Malavsia, ³¹⁷Suraj Eye Institute, Nagpur, India. ³¹⁸Ministry of Health, Apia, Samoa. ³¹⁹Mahidol University, Bangkok, Thailand. ³²⁰National Institute of Hygiene and Epidemiology, Hanoi, Vietnam. ³²¹Hanoi Medical University, Hanoi, Vietnam. ³²²Xi'an Jiaotong University, Xi'an, China. ³²³Precision Care Clinic Corp, Memphis, TN, USA. ³²⁴Eastern Mediterranean Public Health Network, Amman, Jordan. ³²⁵University of Manchester, Manchester, UK. ³²⁶University of Abuja College of Health Sciences, Abuja, Nigeria. ³²⁷Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea. ³²⁸Japan Wildlife Research Center, Tokyo, Japan. ³²⁹Istanbul University, Istanbul, Turkey. ³³⁰Ministry of Health, Bandar Seri Begawan, Brunei. ³³¹University of Madeira, Funchal, Portugal. ³³²Osteoporosis Research Center, Tehran, Iran. ³³³Universidad de Santander, Bucaramanga, Colombia. ³³⁴Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. ³³⁵Academia Sinica, Taipei, Taiwan. ³³⁶Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany. ³³⁷IRCCS Ente Ospedaliero Specializzato in Gastroenterologia S. de Bellis, Bari, Italy. ³³⁸Jivandeep Hospital, Anand, India. ³³⁹Centro de Investigação em Saúde de Angola, Caxito, Angola. ³⁴⁰Vietnam National Heart Institute, Hanoi, Vietnam. ³⁴¹National Hospital of Endocrinology, Hanoi, Vietnam.

³⁴²Clínica de Medicina Avanzada Dr. Abel González, Santo Domingo, Dominican Republic. ³⁴³University of Sarajevo, Sarajevo, Bosnia and Herzegovina. ³⁴⁴Ministry of Health and Medical Services, Honiara, Solomon Islands. ³⁴⁵Public Health Agency of Catalonia, Barcelona, Spain. ³⁴⁶Observatorio de Salud Pública de Santander, Bucaramanga, Colombia. ³⁴⁷Ardabil University of Medical Sciences, Ardabil, Iran. ³⁴⁸Lausanne University Hospital, Lausanne, Switzerland. ³⁴⁹Alborz University of Medical Sciences, Karaj, Iran. ³⁵⁰Ministry of Health, Hanoi, Vietnam. ³⁵¹University of Turku, Turku, Finland. ³⁵²Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala. ³⁵³Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Girona, Spain. ³⁵⁴Universiti Putra Malaysia, Serdang, Malaysia. ³⁵⁵University of Malaya, Kuala Lumpur, Malaysia. ³⁵⁶University of Valencia, Valencia, Spain. ³⁵⁷University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil. ³⁵⁸CS S. Agustín Ibsalut, Palma, Spain. ³⁵⁹Ministerio de Salud, Panama City, Panama. ³⁶⁰Canarian Health Service, Tenerife, Spain. ³⁶¹Universidad Industrial de Santander, Bucaramanga, Colombia. ³⁶²Ministery of Health and Social Protection, Bogotá, Colombia. ³⁶³Associazione Calabrese di Epatologia, Reggio Calabria, Italy. ³⁶⁴Sahlgrenska University Hospital, Gothenburg, Sweden. ³⁶⁵Sitaram Bhartia Institute of Science and Research, New Delhi, India. ³⁶⁶University or Zagreb, Zagreb, Croatia. ³⁶⁷National Institute of Health, Lima, Peru.

³⁶⁸South Karelia Social and Health Care District, Lappeenranta, Finland. ³⁶⁹Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. ³⁷⁰University of São Paulo Clinics Hospital, São Paulo, Brazil. ³⁷¹Human Sciences Research Council, Cape Town, South Africa. ³⁷²Academy of Preventive Medicine, Almaty, Kazakhstan. ³⁷³Teikyo University, Tokyo, Japan. ³⁷⁴Finnish Institute of Occupational Health, Helsinki, Finland. ³⁷⁵Public Health Promotion and Development Organization, Kathmandu, Nepal. ³⁷⁶St Vincent's Hospital, Sydney, New South Wales, Australia. ³⁷⁷University of New South Wales, Sydney, New South Wales, Australia. ³⁷⁸Karolinska Institutet, Stockholm, Sweden. ³⁷⁹London School of Hygiene & Tropical Medicine, London, UK. ³⁸⁰Diponegoro University, Semarang, Indonesia. ³⁸¹University of Bari, Bari, Italy. ³⁸²University of Bordeaux, Bordeaux, France. ³⁸³University of Hohenheim, Stuttgart, Germany. ³⁸⁴Bonn University, Bonn, Germany. ³⁸⁵National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland. ³⁸⁶Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia. ³⁸⁷Ubon Ratchathani University, Ubon Ratchathani, Thailand. ³⁸⁸National Statistical Office, Praia, Cabo Verde. ³⁸⁹Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. ³⁹⁰Ministry of Health, Amman, Jordan. ³⁹¹Amrita Institute of Medical Sciences, Kochi, India. ³⁹²Aristotle University of Thessaloniki, Thessaloniki, Greece. ³⁹³University Medical Center Utrecht, Utrecht, The Netherlands.

³⁹⁴National Research and Innovation Agency, Jakarta, Indonesia.

³⁹⁵Universidad Miguel Hernandez, Madrid, Spain.

³⁹⁶Department of Health, Faga'alu, American Samoa.

³⁹⁷LBJ Hospital, Faga'alu, American Samoa.

³⁹⁸Universidad Centro-Occidental Lisandro Alvarado, Barquisimeto, Venezuela.

³⁹⁹Meharry Medical College, Nashville, TN, USA.

⁴⁰⁰University of Tampere Tays Eye Center, Tampere, Finland.

⁴⁰¹MONICA-FRIULI Study Group, Udine, Italy.

⁴⁰²Institute of Tropical Medicine, Antwerp, Belgium.

⁴⁰³CIBERESP, Alicante, Spain.

⁴⁰⁴Institute for Medical Research, Kuala Lumpur, Malaysia.

⁴⁰⁵Capital Medical University Beijing Tongren Hospital, Beijing, China.

⁴⁰⁶Xinjiang Medical University, Urumqi, China.

⁴⁰⁷Capital Medical University, Beijing, China.

⁴⁰⁸Ministry of Health and Welfare, Taipei, Taiwan.

⁴⁰⁹The Ministry of Health and Wellness, Kingston, Jamaica.

⁴¹⁰St George's, University of London, London, UK.

⁴¹¹Medical University of Vienna, Vienna, Austria.

⁴¹²Universitas Indonesia, Jakarta, Indonesia.

⁴¹³Institute of Food and Nutrition Development of Ministry of Agriculture and Rural Affairs,

Beijing, China.

⁴¹⁴Beijing Institute of Ophthalmology, Beijing, China.

⁴¹⁵Children's Hospital of Fudan University, Shanghai, China.

⁴¹⁶Niigata University, Niigata, Japan.

⁴¹⁷South China Institute of Environmental Sciences, Guangzhou, China.

⁴¹⁸Iran University of Medical Sciences, Tehran, Iran.

⁴¹⁹Peking University, Beijing, China.
⁴²⁰Duke University, Durham, NC, USA.
⁴²¹West Kazakhstan Medical University, Aktobe, Kazakhstan.
⁴²²University of Ghana, Accra, Ghana.
⁴²³deceased.

Extended Data Fig. 1. Extent and composition of diagnosed and screen-detected diabetes by region and sex.

(A) Crude and age-standardised proportion of participants with diagnosed or screen-detected diabetes, and, for those without prior diagnosis, whether they had isolated elevated FPG (FPG \geq 7.0 mmol/L and HbA1c <6.5%), isolated elevated HbA1c (HbA1c \geq 6.5% and FPG <7.0 mmol/L) or elevated levels of both, and (B) crude and age-standardised proportion of participants with screen-detected diabetes who had isolated elevated FPG, isolated elevated HbA1c or elevated levels of both, by region and sex. Its contents are the same as the segment of Panel A that is below the zero line, scaled to 100% so that the composition of screen-detected diabetes can be compared across regions, regardless of its total prevalence. Having elevated levels of both biomarkers has high positive predictive value for subsequent clinical diagnosis and risk of complications^{14,47}, and hence this group is similar to clinically-diagnosed diabetes.

In panel A, regions are ordered by the total proportion of participants who had diagnosed and screen-detected diabetes. In panel B, regions are ordered by the crude proportion of participants with screen-detected diabetes who had elevated levels of both FPG and HbA1c.

Extended Data Fig. 2. Extent and composition of diagnosed and screen-detected diabetes by region, after removing two studies in Mauritius from sub-Saharan Africa.

(A) Crude and age-standardised proportion of participants with diagnosed or screen-detected diabetes, and, for those without prior diagnosis, whether they had isolated elevated FPG (FPG \geq 7.0 mmol/L and HbA1c <6.5%), isolated elevated HbA1c (HbA1c \geq 6.5% and FPG <7.0 mmol/L) or elevated levels of both, and (B) crude and age-standardised proportion of participants with screen-detected diabetes who had isolated elevated FPG, isolated elevated HbA1c or elevated levels of both, by region. Its contents are the same as the segment of Panel A that is below the zero line, scaled to 100% so that the composition of screen-detected diabetes can be compared across regions, regardless of its total prevalence. Having elevated levels of both biomarkers has high positive predictive value for subsequent clinical diagnosis and risk of complications^{14,47}, and hence this group is similar to clinically-diagnosed diabetes.

In panel A, regions are ordered by the total proportion of participants who had diagnosed and screen-detected diabetes. In panel B, regions are ordered by the crude proportion of participants with screen-detected diabetes who had elevated levels of both FPG and HbA1c. Regions are in the same order as in Fig. 2.

61

Extended Data Fig. 3. Relationship between FPG and HbA1c, among participants who had not been previously diagnosed with diabetes, by region.

The shading indicates the density of participants in each region, with darker shades corresponding to more participants and vice versa. The dotted lines are placed at FPG of 7.0 mmol/L and HbA1c of 6.5%, which are common clinical thresholds for diabetes¹⁰⁻¹³. The numbers on the panels indicate the Pearson correlation coefficient between FPG and HbA1c in each region. A total of 623 (0.2%) participants with FPG of 19-28 mmol/L and/or HbA1c of 12-17% are not shown in the figure so that the axes have sufficient resolution in ranges where the great majority of participants were.

Extended Data Table 1. List of analysis regions and countries in each region. The data used in the analysis came from countries shown in bold.

Extended Data Table 2. Specification of models tested to predict whether a participant has $HbA1c \ge 6.5\%$ based on FPG levels, and to predict whether a participant has FPG ≥ 7.0 mmol/L based on HbA1c levels.

* denotes statistical interaction.

Age, FPG, HbA1c and BMI were normalised using the following values (approximately equal to mean and standard deviation across all participants):

Age: centred at 50 years, divided by 15 years FPG: centred at 5.5 mmol/L, divided by 1.0 mmol/L

HbA1c: centred at 5.5%, divided by 0.7 mmol/L

BMI: centred at 26.5 kg/m², divided by 5.0 kg/m²

FPG: fasting plasma glucose; BMI: body-mass index; RE: random effect.

Extended Data Table 3. Performance of models for predicting whether a participant whose FPG was measured had HbA1c \geq 6.5%.

The reported values are the means and ranges over 20 rounds of 10-fold cross-validation. See Extended Data Table 2 for details of model specifications.

Extended Data Table 4. Performance of models for predicting whether a participant whose HbA1c was measured had FPG \geq 7.0 mmol/L.

The reported values are the means and ranges over 20 rounds of 10-fold cross-validation. See Extended Data Table 2 for details of model specifications.

Extended Data Table 5. Coefficients of the best-performing prediction models for whether a participant whose FPG was measured had HbA1c ≥6.5%.

The reported coefficients are the means and 95% confidence intervals.

Extended Data Table 6. Coefficients of the best-performing prediction models for whether a participant whose HbA1c was measured had FPG ≥7.0 mmol/L.

The reported coefficients are the means and 95% confidence intervals.

Extended Data Table 7. Predictors of whether screen-detected diabetes is presented as isolated elevated FPG, isolated elevated HbA1c or elevated levels of both, excluding studies that had measured FPG using a portable device.

The association with each predictor is reported as prevalence ratios, adjusted for all other variables in the table, in the regression models described in Methods in which data from individual participants with screen-detected diabetes were used.