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Abstract

Randomized clinical trials in oncology typically utilize time-to-event endpoints such as
progression-free survival (PFS) or overall survival (OS) as their primary efficacy endpoints, and the
most commonly used statistical test to analyze these endpoints is the logrank test. The power of the
logrank test depends on the behaviour of the hazard ratio of the treatment arm to the control arm.
Under the assumption of proportional hazards (PH) , the logrank test is asymptotically fully efficient.
However, this proportionality assumption does not hold true if there is a delayed treatment effect.
Cancer immunology has evolved over time and several cancer vaccines are available in the market for
treating existing cancers. This includes sipuleucel-T for metastatic hormone-refractory prostate
cancer, nivolumab for metastatic melanoma, and pembrolizumab for advanced non-small-cell lung
cancer. Since cancer vaccines require some time to elicit an immune response, a delayed treatment
effect is observed, resulting in a violation of the proportional hazards assumption. Thus the
traditional logrank test may not be optimal for testing immuno-oncology drugs in randomized clinical
trials. Moreover, the new immuno-oncology compounds have been shown to be very effective in
prolonging overall survival. Therefore it is desirable to implement a group sequential design with the
possibility of early stopping for overwhelming efficacy. In this paper we investigate the max-combo
test, which utilzes the maximum of three weighted log-rank statistics, as a robust alternative to the
logrank test. The new test is implemented for two-stage designs with possible early stopping at the
interim analysis time point.
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1 Introduction

Consider a clinical trial where a new treatment will be compared to the standard of care, and
where the primary endpoint is overall survival time (OS) or progression free survival time
(PFS). Let h0(t) and h1(t) represent the hazard rates at any time t for the standard of care
and the new treatment, respectively, and let λ(t) = h1(t)

h0(t)
represent the hazard ratio at time t.

We wish to test the null hypothesis H0: h1(t) = h0(t) for all t, against the 1-sided alternative
hypothesis h1(t) ≤ h0(t) with strict inequality at at least one value of t. Under the
proportional hazard assumption, the hazard ratio λ(t) = λ, independent of t, and the
alternative hypothesis implies that λ < 1. In this setting the logrank test is asymptotically
fully efficient. (See for example Kalbfleisch and Prentice [2011]). Sometimes, however, the
treatment effect takes time to materialize, which results into a time lag before the two survival
curves separate. For example, the immunology drugs being tested in oncology trials exhibit
this phenomenon.This late separation or delayed treatment effect implies that the assumption
of proportional hazards no longer holds. Another example of non-proportional hazards is when
the hazard rates for survival change after disease progression.

When the proportional hazards assumtion is violated, the logrank test is no longer fully
efficient and may lose power relative to other tests that are better able to handle the
non-proportionality. The Fleming-Harrington or Gρ,γ class of hypothesis tests (Fleming and
Harrington [1981]) are generalizations of the logrank test in which weights are assigned to the
failure times by choice of two parameters, ρ and γ. Thus they are known as weighted logrank
tests. The G0,0 test applies equal weights to the failure times and thereby yields the standard
logrank test. The G1,0 and G0,1 tests are more sensitive, respectively, to early and late
difference alternatives. Since one would not know in advance whether the survival curves will
separate early, separate late, or exhibit the proportional hazards alternative, a robust option
for hypothesis testing when non-proportional hazards are expected, is to define the test
statistic as the maximum of the above three Fleming-Harrington statistics. This test is
referred to as the max-combo test. It was proposed in an Industry and FDA Sponsored Public
Workshop in Washington DC in 2017duk. Several presentations at that workshop compared
relative efficiencies of the max-combo and logrank tests for non-proportional hazards
alternatives. These comparisons, however, were restricted to single-look, fixed-sample designs.
Several recent clinical trials of immuno-oncology compounts, for example the PD-1 inhibitors
(see McDermott and Jimeno [2015]), have been shown to prolong survival significantly relative
conventional cytotoxic therapies. Therefore the option to perform an interim analysis and stop
early if there is overwhelming efficacy would be desirable. In this paper we will compare the
performance of the max-combo test to that of the logrank test for group sequential designs
with the possibility of early efficacy stopping at an interim analysis time point.
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2 Modelling the Survival Curves

Ristl et al (2019) have developed non-proportional hazards models by specifying different
hazard rates for the treatment and control arms before and after disease progression, classified
by biomarker status, as shown in Figure 1. For a delayed onset of treatment effect after a time
tonset, the hazard function is

λ(t) = λpre−onsetIt<tonset + λpost−onsetIt≥onset,

where I(.) is the indicator function. To model changing hazards after disease progression, let Y
denote the time to disease progression based on the hazard functions
λp(t) ∈ {λp, λp−(t), λp+(t)}. Let λD(t) ∈ {λD, λD−(t), λD+(t)} be the hazard functions for
death before disease progression. Let λPD(t) ∈ {λPD, λPD−(t), λPD+(t)} be the hazard
functions for death after disease progression. Conditional on Y = s the hazard function for
death is

λ(t|Y = s) = λD(t)It≤s + λPD(t)It>s

and the corresponding conditional survival function is

S(t|Y = s) = exp

{
−
∫ t

0

λ(t|Y = s)

}
ds .

Thus the unconditional survival function is

S(t) =

∫ t

0

S(t|Y = s)dP (Y = s) .

The survival distribution comprising biomarker negative and positive subpopulations is
obtained as a mixture distribution over the survival functions of the subpopulations. To
simulate data, survival times are sampled from the theoretical overall survival function S(t).
We shall utilize these models to generate the late separation of the survival curves under two
scenarios; delayed response and changing hazards after disease progression. We shall assume
that the relevant hazard rates are piece-wise constant.

2.1 Delayed Treatment Effect

For this scenario we will assume that the median survival on both arms is 12 months for the
first 3 months. After 3 months, the curves separate with hazard ratio 0.6. Figure 2 displays
the relevant survival, hazard, and hazard ratio functions.

2.2 Changing Hazards after Disease Progression

For this scenario we assume that the median survival time corresponding to λD is 18 months
for the control arm. The hazard ratio is 1 for the first 3 months, dropping to 0.6 after 3
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Figure 1: Multi-state representation of the modeled sources of non-proportional hazards

months. The median time to progression corresponding λp is 5 months for the control arm.
The hazard ratio is 1 for the first 4 months, dropping to 0.4 after 3 months. The median
survival time after progression corresponding to λPD is 11 months for the control arm with a
hazard ratio of 0.5. The survival, hazard rate and hazard ratio functions arising from these
specifications are displayed in Figure 3.

3 The Max-Combo Statistics

The statistical power of the logrank test deteriorates when the proportional hazards
assumption is violated. However a weighted version of log-rank test, with properly chosen
weights, will regain the lost statistical power. Suppose we are analyzing survival data at some
calendar time t and have already observed d1, d2, . . . dk events of interest at corresponding
patient follow-up times τ1, τ2, . . . τk. Suppose d11, d12, . . . d1k of these events are from the
treatment group. Then a weighted logrank statistic is defined as

Gρ,γ =
k∑
j=1

Q̂(τj) (d1j − E(d1j)) (3.1)

where E(d1j) =
n1jd1j
nj

with n1j being the number of patients from the treatment arm that were
at risk at time τj and nj being the total number of patients at risk at time τj. The variance of
this weighted statistic is

V ar(Gρ,γ) =
∑

Q̂(τj)
2V ar(d1j) =

∑
Q̂(τj)

2n1j(nj − n1j)dj(nj − dj)
n2
j(nj − 1)

. (3.2)

In these equations, Q̂(τj) is the weight associated with the event at time τj. Although, one can
use any choice of weights for testing purposes, we will concentrate on the weights, proposed by
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Figure 2: Survival, hazard and hazard ratio functions for late separation model

Harrington and Fleming. The Harrington-Fleming weights are parameterized by ρ and γ and
can be computed as

Q̂(τj) = Ŝ(τj)
ρ
(

1− Ŝ(τj)
)γ

(3.3)

where Ŝ(τj) is the empirical survival function estimated from the pooled sample at time τj.
The choice of ρ and γ is rather subjective and will weight certain events more heavily than
others. For example, the regular log-rank test that weights each event equally uses ρ = γ = 0,
whereas, ρ = 0, γ = 1 places heavier weight on the late events and almost no weight on the
early events. If early events are of greater interest one would use ρ = 1 and γ = 0. In reality it
is difficult to determine at the start of the trial whether to emphasize early or late events and
hence it difficult to pre-specify a single choice of ρ and γ for the Harrington-Fleming test. An
alternate testing strategy is to use several Harrington-Fleming statistics with different values of
ρ and γ and take their maximum. This is the max-combo test, that was discussed in the 2017
Industry and FDA sponsored Public Workshop on Oncology Clinical Trials in the Presence of
Non-Proportional Hazards. To this end we first standardized weighted log-rank statistic as

Zρ,γ =
Gρ,γ√

V ar(Gρ,γ)
.

The max-combo statistic is the maximum of three Harrington Fleming standardized weighted
statistics:

Z̄ = max
(
Z0,0, Z1,0, Z0,1

)
. (3.4)
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Figure 3: Survival, hazard and hazard ratio functions for disease progression model

4 Group Sequential Monitoring

Trials of immunology compounds have prolonged study durations both because the induction
of immunity often takes some time and because the therapies are effective in prolonging
survival. Thus a group sequential design with possible early stopping for overwhelming efficacy
could be more efficient than a single-look design. Suppose interim analyses are taken at
information times t1, t2, ... . . . , tk. The max-combo statistic (Z̄k) at information time tk is the
maximum of Z0,0

k , Z1,0
k , Z0,1

k . Although the statistical power (evaluated under the alternative
hypothesis) with the max-combo test will be estimated by simulation, we must know the
distribution of Z̄k =

(
Z0,0
k , Z1,0

k , Z0,1
k

)
under the null hypothesis is true to compute the group

sequential efficacy boundaries. The following is the main result of this paper:

The sequentially computed max-combo statistics have the following distribution under the null
hypothesis that the hazard ratio is 1:

E(Z̄k) = 0 (4.5)
V ar(Zρ1,γ1

k ) = 1 (4.6)

Cov(Zρ1,γ1
k , Zρ2,γ2

k ) =
Cov(Gρ1,γ1

k , Gρ2,γ2
k )√

V ar(Gρ1,γ1
k )V ar(Gρ2,γ2

k )
=

V ar(G
(ρ1+ρ2)/2,(γ1+γ2)/2
k )√

V ar(Gρ1,γ1
k )V ar(Gρ2,γ2

k )
(4.7)

Cov(Zρ1,γ1
k , Zρ2,γ2

k+1 ) =
Cov(Gρ1,γ1

k , Gρ2,γ2
k+1 )√

V ar(Gρ1,γ1
k )V ar(Gρ2,γ2

k )
=

Cov(Gρ1,γ1
k , Gρ2,γ2

k )√
V ar(Gρ1,γ1

k )V ar(Gρ2,γ2
k )

(4.8)

V ar(Gρ,γ
k ) can be computed by equation (3.2). The result for the covariance between the two
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weighted statistics at the same look k, given by equation (4.7), was derived by Karrison [2016].
The result for the covariance between two weighted statistics at the two distinct looks k and
k + 1, given by equation (4.8), is based on the results in Tsiatis [1982]. This covariance
structure implies that the weighted log-rank statisics have independent increments, and thus
greatly facilitates the generation of group sequential efficacy boundaries.

Suppose, in a two-stage design, we decide to take the interim analysis at information time t1
and, out of total available type I error α, we decide to spend α1 at the interim. We can
compute the early stopping boundary c1 such that if Z̄1 ≥ c1 the trial will stop at time t1 with
an efficacy claim on the new treatment. To compute c1, we need to solve the following equation

P0

(
Z̄1 ≥ c1

)
= α1

⇒P0

(
Z̄1 < c1

)
= P0

(
(Z0,0

1 , Z1,0
1 , Z0,1

1 ) < c1
)

= 1− α1 (4.9)

Using the distribution of (Z0,0
1 , Z1,0

1 , Z0,1
1 ) (equations (4.5) and (4.6 )) we can compute c1.

Suppose, at the interim we fail to reject the null hypothesis due to the max-combo statistic
obtained from the data being below c1. In that case we will go to the final analysis. At the
final analysis time, we need to evaluate the final stage group sequential boundary c2 so that
overall type I error is controlled at level α. Towards that end we need to solve

P0

(
Z̄1 < c1 ∩ Z̄2 ≥ c2

)
= α− α1

⇒P0

(
Z̄1 < c1

)
− P0

(
Z̄1 < c1 ∩ Z̄2 < c2

)
= α− α1

⇒P0

(
Z̄1 < c1 ∩ Z̄2 < c2

)
= 1− α (4.10)

Solving equations (4.9),(4.10) requires repeated evaluation of multi-dimensional integrals. The
dimension of these integrals is three times the number of stages. The evaluation requires
intensive computation and it will be difficult to solve without an efficient computation
technique. We have used the approach proposed by Ghosh et al. [2017] for computing the
group sequential boundaries for multi-arm multi-stage trials.

5 Simulation Experiments

We will obtain operating characteristics for the group sequential max-combo test, the group
sequential log-rank test, and the single stage max-combo test by simulation under
non-proportional hazards alternatives. We have modeled two different scenarios for
non-proportional hazards – delayed treatment effect and changing hazards after disease
progression, as explained in Section 2. For these simulation experiments we consider an
immunology trial in which 300 patients are enrolled at a uniform rate of 25 patients per month
over a 12 month. period. Each patient is randomized to either the new treatment or to
standard of care in a 1:1 randomization ratio. After randomization, each patient is followed for
up to a maximum of 30 months so that the final analysis occurs at month 42. We plan to take
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one interim look at the accruing data for possible early efficacy stopping. We will examine four
possible calendar times – 18 months, 21 months, 24 months and 27 months – for taking the
interim look. The amount of type-1 error α1 to be spent at the interim look is obtained from
γ(−5) spending function proposed by Hwang et al. [1990], such that

α1 = α
1− e−γν1
1− e−γ

where γ = −5 and ν1 is the information fraction for the interim look. The information fraction
ν1 is estimated separately for each calendar time based on the enrollment rate and the hazard
functions for the two treatments under the alternative hypothesis. The critical cut-off value c2
for the final analysis is obtained by solving equation (4.10) so as to ensure that the type-1
error is α. All results are provided for α = 0.025, one-sided.

Figure 4 compares the power of the group sequential logrank and the group sequential
max-combo tests, based on the delayed response model of Section 2.1, at the four calendar
times 18 months, 21 months, 24 months, and 27 months. The max-combo test is shown to

Figure 4: Power Comparisons for Delayed Response Model: logrank vs max-combo

have greater power with power gains of 10%-15% at the interim analysis and 8%-10% at the
final analysis.

Figure 5 compares the power of the group sequential logrank and the group sequential
max-combo tests, based on the changing hazards upon progression model of Section 2.2, at the
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Figure 5: Power Comparisons for Changing Hazards upon Progression: logrank vs max-combo

four calendar times 18 months, 21 months, 24 months, and 27 months. The max-combo test is
shown to have greater power with power gains of 5%-15% at the interim analysis and 5%-7%
at the final analysis.

Since the logrank test is asymptotically fully efficient under proportional hazards, it would be
interesting to know the extent to which the max-combo test loses power in this situation. This
is shown in Figure 6. The max-combo test loses 3%-6% power at the interim analysis and 3%
overall.

Finally, we wish to study the impact of adding an interim analysis to the max-combo test in
terms of power loss for the same sample size. This is shown in Table 1 where the enrollment
and follow-up strategies are the same for both designs. The overall power loss for taking the
additional look is beween 1.5% and 6% for the delayed reponse model and between 1.6% and
4.5% for the changing hazards upon progression model. On the other hand there are
substantial savings in sample size and study duration due to the possibility of early stopping
at the interim look. For the delayed response model, there is between 19% and 49%
probability of early stopping at the interim analysis time point. For the changing hazards
upon progression model, the corresponding probabilities are between 12% and 59%. Thus the
power losses are more than offset by the shorter study duration and smaller average sample
size, and could easily be made up by committing additional patients to the study such that the
average sample sizes of the two designs are the same.
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Figure 6: Power comparisons of logrank vs max-combo under proportional hazards alternatives

6 Discussion

Immuno-oncology trials are have met with considerable success in targeted biomarker
subgroups. This very success implies that unless group sequential methods are employed for
early efficacy stopping, the trial durations are likely to be considerably prolonged, resulting in
delays in delivering effective new compounds to cancer patients. Group sequential methods
based on the conventional logrank test might lose power, however, because of the possibility of
late separation of the survival curves. Late separation is, moreover, biologically plausible
either due to delayed effects of the new immunotherapies or due to changes in the hazard rates
for survival following disease progression. Figure 7 displays the Kaplan-Meier curves of several
recent immuno-oncology trials, and reflect both, the long study duration and the late
separation of the survival curves. These results were shown at the Public Workshop for
oncology clinical trials that was cited above. The max-combo test is a robust alternative to the
logrank test that caters to the possibility of late separation. For two-stage group sequential
designs we have shown power gains of up to 16% at the interim analysis time point and up to
8% overall for the max-combo test compared to the logrank test. As against this, if the
proportional hazards assumpton holds, the max-combo test can lose up to 3% power compared
to the logrank test. Finally, the saving in study duration for a two-stage design can be
considerable. We have shown between 11% and 59% probabilities for early stopping under the
various scenarios discussed. All these results argue for the use of tests like the max-combo test
that perform better than the logrank test if the survial curves separate late while at the same
time not giving away too much power if the proportional hazards alternative should hold.
Finally, we have not investigated the possibility of early stopping for futility in this paper, nor

10



Table 1: Power of Single-Stage vs 2-Stage Max-Combo Tests

Interim Power Power Loss Prob of
Analysis Single Stage 2-Stage of 2-Stage Early Stop
18 mths 0.8275 0.7673 0.0602 0.1916

Delayed 21 mths 0.8275 0.7882 0.0393 0.2211
Response 24 mths 0.8275 0.8003 0.0242 0.3589

27 mths 0.8275 0.8125 0.0150 0.4947
18 mths 0.7875 0.7423 0.0450 0.1160

Changing 21 mths 0.7875 0.7543 0.0330 0.3011
Hazards 24 mths 0.7875 0.7600 0.0210 0.4489

27 mths 0.7875 0.7710 0.0160 0.5941

do we believe that it is advisable. By stopping early for futility there is a possibility of missing
an effective therapy that might have produced a separation of the survival curves at a later
time point,
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Figure 7: Kaplan-Meier Plots of Recent Immuno-oncology Trials
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