82 research outputs found

    Single and double qubit gates by manipulating degeneracy

    Full text link
    A novel mechanism is proposed for single and double qubit state manipulations in quantum computation with four-fold degenerate energy levels. The principle is based on starting with a four fold degeneracy, lifting it stepwise adiabatically by a set of control parameters and performing the quantum gate operations on non-degenerate states. A particular realization of the proposed mechanism is suggested by using inductively coupled rf-squid loops in the macroscopic quantum tunnelling regime where the energy eigen levels are directly connected with the measurable flux states. The one qubit and two qubit controlled operations are demonstrated explicitly. The appearance of the flux states also allows precise read-in and read-out operations by the measurement of flux.Comment: 6 pages + 5 figures (separately included

    Quantum inference of states and processes

    Get PDF
    The maximum-likelihood principle unifies inference of quantum states and processes from experimental noisy data. Particularly, a generic quantum process may be estimated simultaneously with unknown quantum probe states provided that measurements on probe and transformed probe states are available. Drawbacks of various approximate treatments are considered.Comment: 7 pages, 4 figure

    Stochastic Production Of Kink-Antikink Pairs In The Presence Of An Oscillating Background

    Get PDF
    We numerically investigate the production of kink-antikink pairs in a (1+1)(1+1) dimensional ϕ4\phi^4 field theory subject to white noise and periodic driving. The twin effects of noise and periodic driving acting in conjunction lead to considerable enhancement in the kink density compared to the thermal equilibrium value, for low dissipation coefficients and for a specific range of frequencies of the oscillating background. The dependence of the kink-density on the temperature of the heat bath, the amplitude of the oscillating background and value of the dissipation coefficient is also investigated. An interesting feature of our result is that kink-antikink production occurs even though the system always remains in the broken symmetry phase.Comment: Revtex, 21 pages including 7 figures; more references adde

    Electronic excitations of α- Fe2 O3 heteroepitaxial films measured by resonant inelastic x-ray scattering at the Fe L edge

    Get PDF
    Resonant inelastic x-ray scattering (RIXS) spectra of hematite (α-Fe2O3) were measured at the Fe L3 edge for heteroepitaxial thin films which were undoped and doped with 1% Ti, Sn, or Zn, in the energy-loss range in excess of 1 eV to study electronic transitions. The spectra were measured for several momentum transfers q, conducted at both low temperature (T=14 K) and room temperature. While we cannot rule out dispersive features possibly owing to propagating excitations, the coarse envelopes of the general spectra did not appreciably change shape with q, implying that the bulk of the observed L-edge RIXS intensity originates from (mostly) nondispersive ligand field excitations. Summing the RIXS spectra over q and comparing the results at T=14 K to those at T=300 K revealed pronounced temperature effects, including an intensity change and energy shift of the ≈1.4 eV peak, a broadband intensity increase of the 3-4 eV range, and higher energy features. The q-summed spectra and their temperature dependencies are virtually identical for nearly all of the samples with different dopants, save for the temperature dependence of the Ti-doped sample's spectrum, which we attribute to being affected by a large number of free charge carriers. Comparing with magnetization measurements for different temperatures and dopings likewise did not show a clear correlation between the RIXS spectra and the magnetic ordering states. To clarify the excited states, we performed spin multiplet calculations which were in excellent agreement with the RIXS spectra over a wide energy range and provide detailed electronic descriptions of the excited states. The implications of these findings to the photoconversion efficiency of hematite photoanodes is discussed

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Development of Mass Production of VAMF Inoculum by Sand Culture

    No full text
    內生菌根菌(Vesicular-aibuscular mycorrhizal fungus, VAMF)證實與許多作物根系具有親和主,當VAMF感染作物根部形成內生菌根時,往往能產生有益效應,促進根群發育,增加根部對磷肥等要素之吸收能力,促進植株生長。惟內生菌根菌是一種活物寄生真菌,目前尚無法在文工培養基上大量繁殖,接種盆栽宿主植物繁殖內生菌根菌接種源是目前唯一可行途徑。除宿E外,土壤(栽培介質)因子、環境因子等亦可影響內生菌根菌之繁殖。本分所建立之內生菌根百接種源生產體系,分為三個步驟:(一)以多年生百喜草盆栽保存純種,(二)以盆栽玉米繁殖貝種,(三)以大型栽培床之玉米(或營多藤)大量繁殖內生菌根菌,經收集培養土(含宿主根長)風乾裝袋而成接種源。在實際應用上,採用苗期接種,培養洋香瓜內生菌根苗,當內生菌根苗移植於本田,即可將菌種帶到田間,發揮內生菌根之功能,表現其有益效應。 The vesicular-arbuscular mycorrhizal fungus was proved to have the compatibility with root systems of many crops. Formation of VA mycorrhiza in root systems of crops infected by VAM fungus could arise beneficial effects, i.e. promoted the growth and development of root systems, increased the absorption of soil mineral elements, enhanced the top growth of crops. Up today, the common method for propagation of VA mycorrhizal fungi were pot culture because they were obligate symbionts. Factors affected the propagation of VA mycorrhizal fungi in pot culture included host plants, soil (culture media), and environment. We developed a procedure for propagation of VAM fungus inoculum as follows: 1. maintaining the pure VA mycorrhizal fungus in pot culture of bahiagrass, 2. propagation of VAM fungus in pot culture of corn, 3. mass production of VA mycorrhizal fungus inoculum in sand bed culture of corn or beggarhce, 4. air-drying and bagging the harvested culture soil including the segments of infected root systems of host plants and fungal chiamydospores. Method for application of VA mycorrhizal fungus to field was by transplanting mycorrhizal seedlings of muskmelon pre-inoculated with infested soil in plastic net house. When the mycorrhizal seedlings were transplanted to the field, mycorrhizal root systems could show beneficial effects to muskmelon production
    corecore