7 research outputs found

    The Moderation of an Intimate Relationship on Pornography Use Among Religious Singles

    Get PDF
    Previous research has explored the relationship between religious involvement, loneliness, and pornography use. For some, pornography use can be used as a coping mechanism to overcome feelings of loneliness. This pornography use is especially problematic for those who are religious, as this use contradicts their convictions and beliefs and has been shown to have many negative outcomes. To date, little research has focused on the specific growing population of singles who can be more prone to loneliness due to the lack of a romantic relationship. To rectify this gap, this study seeks to explore the ability an emotionally intimate relationship has to reduce loneliness and pornography use for the religious single. An online survey was used to recruit participants (N = 95) who were single (not in a romantic relationship), religious (believed in God), and had used pornography in the last six months. The desired outcome is to understand what condition or in what way an intimate relationship moderates both the direct relationship between religious involvement and pornography use and the indirect mediated relationship through loneliness. While results showed no significance in either the mediating or moderating conditional relationships, there were significant direct relationships between intimacy, loneliness, and pornography use. Implications suggest that an intimate relationship for religious singles may be able to reduce feelings of loneliness and pornography use

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression

    Get PDF
    Inflammation in HIV infection is predictive of non-AIDSmorbidity and death1, higher set point plasma virus load2 and virus acquisition3; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection4–10, also provide target cells for the virus during acute infection, impairCD4T-cell recovery, and are associated with disease progression6,7,11–19.Herewe manipulated IFN-I signalling in rhesus macaques (Macaca mulatta) during simian immunodeficiency virus (SIV) transmission and acute infection with two complementary in vivointerventions. We show that blockade of the IFN-I receptor caused reduced antiviral gene expression, increased SIV reservoir size and accelerated CD4 T-cell depletion with progression to AIDS despite decreased T-cell activation. In contrast, IFN-α2a administration initially upregulated expression of antiviral genes and prevented systemic infection. However, continued IFN-α2a treatment induced IFN-I desensitization and decreased antiviral gene expression, enabling infection with increased SIV reservoir size and accelerated CD4 T-cell loss. Thus, the timing of IFN-induced innate responses in acute SIV infection profoundly affects overall disease course and outweighs the detrimental consequences of increased immune activation. Yet, the clinical consequences of manipulation of IFN signalling are difficult to predict in vivo and therapeutic interventions in human studies should be approached with caution

    Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics

    No full text

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    References

    No full text
    corecore