815 research outputs found

    MRI-based mechanical analysis of carotid atherosclerotic plaque using a material-property-mapping approach: A material-property-mapping method for plaque stress analysis

    Get PDF
    Background and objective Atherosclerosis is a major underlying cause of cardiovascular conditions. In order to understand the biomechanics involved in the generation and rupture of atherosclerotic plaques, numerical analysis methods have been widely used. However, several factors limit the practical use of this information in a clinical setting. One of the key challenges in finite element analysis (FEA) is the reconstruction of the structure and the generation of a mesh. The complexity of the shapes associated with carotid plaques, including multiple components, makes the generation of meshes for biomechanical computation a difficult and in some cases, an impossible task. To address these challenges, in this study, we propose a novel material-property-mapping method for carotid atherosclerotic plaque stress analysis that aims to simplify the process. Methods The different carotid plaque components were identified and segmented using magnetic resonance imaging (MRI). For the mapping method, this information was used in conjunction with an in-house code, which provided the coordinates for each pixel/voxel and tissue type within a predetermined region of interest. These coordinates were utilized to assign specific material properties to each element in the volume mesh which provides a region of transition. The proposed method was subsequently compared to the traditional method, which involves creating a composed mesh for the arterial wall and plaque components, based on its location and size. Results The comparison between the proposed material-property-mapping method and the traditional method was performed in 2D, 3D structural-only, and fluid-structure interaction (FSI) simulations in terms of stress, wall shear stress (WSS), time-averaged WSS (TAWSS), and oscillatory shear index (OSI). The stress contours from both methods were found to be similar, although the proposed method tended to produce lower local maximum stress values. The WSS contours were also in agreement between the two methods. The velocity contours generated by the proposed method were verified against phase-contrast magnetic resonance imaging (MRI) measurements, for a higher level of confidence. Conclusion This study shows that a material-property-mapping method can effectively be used for analyzing the biomechanics of carotid plaques in a patient-specific manner. This approach has the potential to streamline the process of creating volume meshes for complex biological structures, such as carotid plaques, and to provide a more efficient and less labor-intensive method

    A novel approach to Isoscaling: the role of the order parameter m = (N-Z)/A

    Full text link
    Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m^6) theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the 'external (conjugate) field' H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m - scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally.Comment: 14 pages, 5 figure

    Economic Fluctuations and Diffusion

    Full text link
    Stock price changes occur through transactions, just as diffusion in physical systems occurs through molecular collisions. We systematically explore this analogy and quantify the relation between trading activity - measured by the number of transactions NΔtN_{\Delta t} - and the price change GΔtG_{\Delta t}, for a given stock, over a time interval [t,t+Δt][t, t+\Delta t]. To this end, we analyze a database documenting every transaction for 1000 US stocks over the two-year period 1994-1995. We find that price movements are equivalent to a complex variant of diffusion, where the diffusion coefficient fluctuates drastically in time. We relate the analog of the diffusion coefficient to two microscopic quantities: (i) the number of transactions NΔtN_{\Delta t} in Δt\Delta t, which is the analog of the number of collisions and (ii) the local variance wΔt2w^2_{\Delta t} of the price changes for all transactions in Δt\Delta t, which is the analog of the local mean square displacement between collisions. We study the distributions of both NΔtN_{\Delta t} and wΔtw_{\Delta t}, and find that they display power-law tails. Further, we find that NΔtN_{\Delta t} displays long-range power-law correlations in time, whereas wΔtw_{\Delta t} does not. Our results are consistent with the interpretation that the pronounced tails of the distribution of GΔtareduetoG_{\Delta t} are due to w_{\Delta t},andthatthelongrangecorrelationspreviouslyfoundfor, and that the long-range correlations previously found for | G_{\Delta t} |aredueto are due to N_{\Delta t}$.Comment: RevTex 2 column format. 6 pages, 36 references, 15 eps figure

    Hot Nuclear Matter in Asymmetry Chiral Sigma Model

    Full text link
    In the frame work of SU(2) chiral sigma model, the nuclear matter properties at zero and finite temperature have been investigated. We have analyzed the nuclear matter equation of state by varying different parameters, which agrees well with the one derived from the heavy-ion collision experiment at extreme densities and reliable realistic(DBHF) model at low density region. We have then calculated the temperature dependent asymmetric nuclear matter, also investigated the critical temperature of liquid gas phase transition and compared with the experimental data. We found that the critical temperature in our model is in the range of 14-20 MeV.Comment: 21 pages, 10 figures, to be published in Nuclear Physics

    On two-dimensionalization of three-dimensional turbulence in shell models

    Full text link
    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell models we have obtained the following results: (i) progressive steepening of the energy spectrum with increased strength of the rotation, and, (ii) depletion in the energy flux of the forward forward cascade, sometimes leading to an inverse cascade. The presence of extended self-similarity and self-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case

    Modified Fragmentation Function in Heavy Ion Collisions at RHIC via Direct photon-Jet Measurements

    Get PDF
    The presented results are the first measurements at RHIC for direct γ\gamma-charged hadron azimuthal correlations in heavy ion collisions. We use these correlations to study the color charge density of the medium through the medium-induced modification of high-pT_T parton fragmentation. Azimuthal correlations of direct photons at high transverse energy (8 << pT_T << 16 GeV) with away-side charged hadrons of transverse momentum (3 << pT_T << 6 GeV/c) have been measured over a broad range of centrality for Au+AuAu+Au collisions and p+pp+p collisions at sNN\sqrt{s_{NN}} = 200 GeV in the STAR experiment. A transverse shower shape analysis in the STAR Barrel Electromagnetic Calorimeter Shower Maximum Detector is used to discriminate between the direct photons and photons from the decays of high pT_T π0\pi^{0}. The per-trigger away-side yield of direct γ\gamma is smaller than from π0\pi^{0} trigger at the same centrality class. Within the current uncertainty the ICP_{CP} of direct γ\gamma and π0\pi^{0} are similar.Comment: 5 pages, 4 figures, 3rd International Conference on Hard and Electro- Magnetic Probes of High-Energy Nuclear Collision

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore