335 research outputs found

    LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed

    Full text link
    Running off-site software middleboxes at third-party service providers has been a popular practice. However, routing large volumes of raw traffic, which may carry sensitive information, to a remote site for processing raises severe security concerns. Prior solutions often abstract away important factors pertinent to real-world deployment. In particular, they overlook the significance of metadata protection and stateful processing. Unprotected traffic metadata like low-level headers, size and count, can be exploited to learn supposedly encrypted application contents. Meanwhile, tracking the states of 100,000s of flows concurrently is often indispensable in production-level middleboxes deployed at real networks. We present LightBox, the first system that can drive off-site middleboxes at near-native speed with stateful processing and the most comprehensive protection to date. Built upon commodity trusted hardware, Intel SGX, LightBox is the product of our systematic investigation of how to overcome the inherent limitations of secure enclaves using domain knowledge and customization. First, we introduce an elegant virtual network interface that allows convenient access to fully protected packets at line rate without leaving the enclave, as if from the trusted source network. Second, we provide complete flow state management for efficient stateful processing, by tailoring a set of data structures and algorithms optimized for the highly constrained enclave space. Extensive evaluations demonstrate that LightBox, with all security benefits, can achieve 10Gbps packet I/O, and that with case studies on three stateful middleboxes, it can operate at near-native speed.Comment: Accepted at ACM CCS 201

    (En)gendering the political: Citizenship from marginal spaces

    Get PDF
    This introduction sets out the central concerns of this special issue, the relationship between marginality and the political. In doing so it makes the argument that the process of marginalisation, the sites and experiences of ‘marginality’ provide a different lens through which to understand citizenship. Viewing the political as the struggle over belonging it considers how recent studies of citizenship have understood political agency. It argues that marginality can help us understand multiple scales, struggles and solidarities both within and beyond citizenship. Whilst there is a radical potential in much of the existing literature in citizenship studies it is also important to consider political subjectivities and acts which are not subsumed by right claims. Exploring marginality in this way means understanding how subjects are disenfranchised by regimes of citizenship and at the same how time this also (en)genders new political possibilities which are not always orientated towards 'inclusion'. The introduction then sets out how each article contributes to this project

    Writing in Britain and Ireland, c. 400 to c. 800

    Get PDF
    No abstract available

    Pest population dynamics are related to a continental overwintering gradient

    Get PDF
    Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Do Larval Supply and Recruitment Vary among Chemosynthetic Environments of the Deep Sea?

    Get PDF
    BACKGROUND: The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. METHODOLOGY/PRINCIPAL FINDINGS: WE USE DATA FROM THE PUBLISHED SCIENTIFIC LITERATURE TO: (1) compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2) explore factors that affect these life history processes, when information is available; and (3) explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm(-2) d(-1) across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood falls. Vents also have the most uneven taxonomic structure, with fewer recruits represented by higher taxonomic levels (phyla, orders, classes) compared to seeps and wood and kelp falls, whereas the opposite is true at whale falls. CONCLUSIONS/SIGNIFICANCE: Based on our evaluation of the literature, the patterns and regulatory factors of the early history processes in chemosynthetic environments in the deep sea remain poorly understood. More research focused on these early life history stages will allow us to make inferences about the ecological and biogeographic linkages among the reducing habitats in the deep sea

    Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework

    Full text link
    Despite the abundance of literature on organismal responses to multiple environmental stressors, most studies have not matched the timing of experimental manipulations with the temporal pattern of stressors in nature. We test the interactive effects of diel-cycling hypoxia with both warming and decreased salinities using ecologically realistic exposures. Surprisingly, we found no evidence of negative synergistic effects on Olympia oyster growth; rather, we found only additive and opposing effects of hypoxia (detrimental) and warming (beneficial). We suspect that diel-cycling provided a temporal refuge that allowed physiological compensation. We also tested for latent effects of warming and hypoxia to low-salinity tolerance using a seasonal delay between stressor events. However, we did not find a latent effect, rather a threshold survival response to low salinity that was independent of early life-history exposure to warming or hypoxia. The absence of synergism is likely the result of stressor treatments that mirror the natural timing of environmental stressors. We provide environmental context for laboratory experimental data by examining field time series environmental data from four North American west coast estuaries and find heterogeneous environmental signals that characterize each estuary, suggesting that the potential stressor exposure to oysters will drastically differ over moderate spatial scales. This heterogeneity implies that efforts to conserve and restore oysters will require an adaptive approach that incorporates knowledge of local conditions. We conclude that studies of multiple environmental stressors can be greatly improved by integrating ecologically realistic exposure and timing of stressors found in nature with organismal life-history traits

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex
    • …
    corecore