
Copyright

by

Tyler Scott Hunt

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/479133994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Tyler Scott Hunt
certifies that this is the approved version of the following dissertation:

Private Computation on Public Clouds

Committee:

Emmett Witchel, Supervisor

David Nellans

Christopher J. Rossbach

Hovav Shacham

Private Computation on Public Clouds

by

Tyler Scott Hunt

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2020

To Victoria: doing the work requires stealing the time to do it, and I stole

most of it from you.

Acknowledgments

Without my collaborators this document would be worse. Without my

support system this document would end abruptly, unfinished. Without my

advisor this document would be empty.

I’ve had the great pleasure of working with a bunch of very smart peo-

ple. I’d first like to acknowledge Yuanzhong Xu, Youngin Kwon, and Sangman

Kim for their invaluable early guidance. Talking to someone who knows what

they’re doing is always valuable, especially when you don’t. I’d also like to

thank Zhiting Zhu, Zhipeng Jia, Yige Hu, Vance Miller, Simon Peter, and

Ariel Szekely all of whom contributed to the work presented here. Finally, a

big thank you to my committee members: Christopher J. Rossbach, Hovav

Shacham, and David Nellans for their insightful questions and guidance which

helped to hone the work to produce this document. Christopher J. Rossbach

deserves another mention here since he also got me a job.

I do not believe I would have been able to sustain this seven year effort

without a little help from my friends. It’s not always fun, and having a solid

group of people to look forward to seeing in the margins often made all the

difference. A special thank you from the bottom of my crusty, musty heart

to the denizens of the Dead Music Capital Band for being a big part of that

difference. In that vein, I would like to acknowledge my family and especially

v

my wife, Victoria, who provide a rock-solid foundation for everything that I

do, and this is no exception.

Finally, its impossible to overstate my gratitude to Emmett Witchel,

my advisor. Suffice to say he taught me everything I know, so all complaints

about the work should be addressed to him.

I am forever humbled to have had the pleasure of walking along this

stretch of the path with all of you.

Tyler Hunt

The University of Texas at Austin

August, 2020

vi

Private Computation on Public Clouds

Tyler Scott Hunt, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Emmett Witchel

Public clouds offer valuable services at the expense of privacy. Since the

cloud provider controls the privileged software on their machines (the operating

system and the hypervisor), they enjoy access to the secrets processed by the

applications they host. As a result, users must either trust public clouds or

avoid them. Recently, hardware manufacturers have extended CPU designs to

provide trusted execution environments (TEEs). Hardware ensures the data

inside a TEE can only be accessed by the code inside that TEE, protecting

secrets from all software that the provider controls.

However, TEEs do not provide meaningful security for many applica-

tions on their own. In practice, many applications are proprietary or make

use of accelerators like GPUs. Code inside the TEE has access to user secrets

and the freedom to communicate them to the outside world; users cannot

vet proprietary code to ensure it does not exercise that freedom (accidentally

or intentionally). GPUs are not controlled by the CPU directly but instead

by drivers under the cloud provider’s control, making it trivial for the cloud

vii

provider to extract secrets that the user offloads to a GPU for processing. GPU

TEEs can prevent unauthorized access to GPU memory, but communication

with the GPU can still leak information.

We demonstrate system designs that leverage existing (CPU) and pro-

posed (GPU) TEEs that protect users‘ data even when the application code

is colluding with the cloud provider to steal it, or when the user offloads parts

of the application to GPUs.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Protecting secrets from the services that process them 3

1.2 Securely offloading computation to cloud GPUs 5

1.3 Writing conventions and organization 7

Chapter 2. The Malicious Public Cloud Threat Model 8

Chapter 3. Background 10

3.1 Attesting hardware authenticity to a remote user 10

3.2 Trusted Execution Environments 11

3.2.1 Intel Software Guard Extensions 13

3.2.2 Hardware limitations . 16

3.3 GPUs . 18

3.3.1 PCIe and device communication 19

3.3.2 GPU Trusted Execution Environments 21

Chapter 4. Ryoan: A Distributed Sandbox for Untrusted Com-
putation on Secret Data 24

4.1 Ryoan’s speciation of the malicious public cloud threat model . 30

4.2 Native Client background . 31

4.3 Design . 33

4.3.1 Restricted I/O model 37

ix

4.3.2 Secure initialization . 43

4.3.3 Protecting module provider secrets 46

4.3.4 Optimizing module reset 50

4.3.5 Ryoan’s confined environment 52

4.3.6 Protecting Ryoan from privileged software 54

4.4 Implementation . 58

4.4.1 Constraints of current hardware 58

4.4.2 Ryoan-libc . 59

4.4.3 Module address space 60

4.4.4 I/O control . 60

4.4.5 Key establishment between enclaves 62

4.4.6 Checkpointing confined code 62

4.5 Use cases . 64

4.5.1 Email processing . 64

4.5.2 Personal health analysis 65

4.5.3 Image processing . 67

4.5.4 Translation . 68

4.6 Evaluation . 68

4.6.1 Understanding workload performance 70

4.6.2 SGX encryption overheads 75

Chapter 5. Telekine: Secure Computing with Cloud GPUs 79

5.1 Telekine speciation of the malicious public cloud threat model 85

5.1.1 Guarantees . 86

5.1.2 Limitations. 87

5.2 GPU Trusted Execution Environment requirements 88

5.3 Example side-channel attack 90

5.4 Design . 94

5.4.1 Data-oblivious stream construction 98

5.4.2 Telekine operation . 101

5.4.3 Data movement example. 105

5.4.4 Synchronizing data-oblivious streams 107

x

5.5 Implementation . 108

5.6 Evaluation . 109

5.6.1 Telekine performance tradeoff 110

5.6.2 Machine learning algorithms 112

5.6.3 Graph algorithms . 116

5.6.4 WAN latency sensitivity 117

Chapter 6. Related work 118

6.1 Shielding systems. 118

6.1.1 Software shielding. 118

6.1.2 Hardware shielding. 119

6.1.3 Cryptographic shielding. 121

6.2 Timing and termination channels 121

6.3 Work related to Ryoan: decentralized information flow control 122

6.4 Work related to Telekine: secure computation on GPUs 123

Chapter 7. Conclusion 127

Bibliography 129

Vita 169

xi

List of Tables

4.1 Properties Ryoan imposes on untrusted modules, the technology
that enforces them, and the reason Ryoan imposes them. . . . 37

4.2 Inputs for each Ryoan application. 70

4.3 Breakdown of memory size and compute statistics per module
per workload. Load Size: the size of the loaded module be-
fore execution, Inited Size: module size after initialization. Init
Time: module initialization time. CPU Time: Processing time
of enclave (seconds), CPR size: data copied/zeroed on check-
point restore. “Images: Recognize” reports the maximum of all
four image recognition enclaves. 71

4.4 Enclave exits (System Calls, Page Faults, and Interrupts) per
workload per module. “Images: Recognize” reports the maxi-
mum of all four image recognition enclaves. 72

4.5 Instructions per LLC miss on Ryoan benchmarks. Memory
controller SGX slowdown is the slowdown measured for mi-
crobenchmarks of equivalent miss patterns on SGX hardware. 77

5.1 Accuracy distinguishing four classes with batches of size 32,
varying the percentage of each batch containing images from
the target class. 93

5.2 Data-oblivious schedule parameters and the network bandwidth
required. MicroBench from §5.6.1; MXNet from §5.6.2; Galois1
executes on one GPU, Galois2 on two from §5.6.3. ExecStream
sizes are the number of kernel launches, each of which is 320
bytes. XferStream streams contribute twice their size to band-
width consumption because Telekine copies data in both direc-
tions at every quantum. 109

5.3 Overview of machine learning training on MXNet. The input
size is given in pixel dimensions, batch size in images per GPU.
T-put is throughput. 111

5.4 Performance of machine learning training algorithms on Telekine,
measured on the geodist testbed. 113

5.5 Latencies (in ms) of machine learning inference workloads with
the baseline system (Base in the Table) and Telekine. 115

5.6 Performance of Galois applications with Telekine. 116

xii

5.7 Normalized runtime of machine learning workloads with respect
to network round trip time (RTT). 117

xiii

List of Figures

4.1 One of several sandbox instances that make up a Ryoan deploy-
ment. The privileged software includes an operating system and
an optional hypervisor. 34

4.2 The Ryoan chain of trust. SGX hardware attests that a valid
sandbox instance is executing (Hash) with an intended SGX
configuration (Meta). The sandbox instance ensures that it
loaded the expected binary with a signed hash from the software
provider (gray). 35

4.3 Ryoan’s distributed sandbox. Modules contributed by principals–
in this case, the platform providers, 23andMe and Amazon–are
confined to process users’ data safely. 39

4.4 Sandbox instances manage labels on data and modules. The
user’s tag is propagated to all modules, making them confined
after receiving input; for example, Ryoan keeps 23andMe’s tag
when it outsources to Amazon Machine Learning to prevent
leaking 23andMe’s secrets. 49

4.5 Sandbox instance lifecycle: unoptimized vs. checkpoint-based. 52

4.6 Topologies of Ryoan example applications. Nodes in the graph
are sandbox instances, though we identify them by their un-
trusted module. Users establish secure channels with trusted
Ryoan code for the source and sink nodes to provide input and
get output, respectively. 65

4.7 Runtimes of applications with Ryoan overheads enumerated.
Each bar represents the mean of 5 trials annotated with the
95% confidence interval. Ryoan bars show percent slowdown
over native. (Enc: encryption; Marsh: syscall marshaling; CPR:
checkpoint restore; Ryoan: Sandbox+Enc+Marsh+CPR+SGX) 69

4.8 Ryoan application workloads’ sensitivity to emulated instruc-
tion cost. The dashed vertical line denotes the delay (0.39µs)
used to compute the Ryoan bars in Figure 4.7. 74

4.9 Slowdown observed with respect to LLC read-misses running
the cache-miss microbenchmark inside an SGX enclave versus
running the same code without SGX. 75

4.10 Slowdown observed with respect to LLC write-misses running
the cache-miss microbenchmark inside an SGX enclave versus
running the same code without SGX. 76

xiv

5.1 Telekine components and their organization. 81

5.2 Accuracy of multiclass classification for side-channel attacks for
increasing numbers of input classes. 91

5.3 Detailed Telekine overview. 95

5.4 API calls made by the application and their mapping to under-
lying commands performed by Telekine. 106

5.5 A microbenchmark that shows how Telekine overheads decrease
as the running time of the GPU computation increases. . . . 111

5.6 Performance of machine learning training algorithms using a
single GPU with Telekine on the simulated testbed. 113

xv

Chapter 1

Introduction

Public clouds are collections of computing services offered over the In-

ternet to those willing to pay for their use. Some notable examples of public

cloud providers are Amazon Web Services [Amab], Microsoft Azure [azu14],

and Google Cloud [Goo]. Public clouds fill two roles: first, they host public-

facing services like image editing (Pixlr [Pix]), tax preparation (TurboTax [Int]),

or even personal health analyses (23andMe [23ab]). Second, public clouds pro-

vide large pools of resources. Users with computationally intensive workloads—

e.g., training deep neural networks (DNNs)—can rapidly gain access to a large

pool of machines with large amounts of memory, many CPU cores, and ac-

celerators like GPUs. Public clouds have asserted themselves as platforms of

consequence; Amazon Web Services alone reported 35 billion dollars in revenue

for 2019 (about a third of the public cloud market) [Sta].

The de facto success of public clouds is obvious from their market size,

but public clouds remain a non-option for users with sensitive data. Cloud

providers necessarily control the privileged software (i.e., the hypervisor and

the operating system) on their machines for legitimate reasons: controlling

privileged software allows providers to multiplex many users across physical

machines, ultimately reducing costs and improving user choice. However, a

1

side effect of that control is that the cloud provider has full access to the state

of applications. An application can do very little to hide secret data from the

cloud provider. Privileged software controls scheduling, so applications can

be interrupted arbitrarily, giving the cloud provider unfettered access to any

secrets entrusted to them, no matter how briefly the secrets are in memory.

Cloud users must trust providers to provide integrity and privacy or

they must avoid using public clouds altogether. Security-conscious users must

reason about the implications of sharing secret data with public cloud providers

in addition to the operators of the services themselves. For instance, a user of

23andMe might hesitate to disclose data about their health to a company that

might use it for targeted advertisements like Google; a user like Netflix may

want to protect the secrets behind their movie recommendation system from

Amazon, who runs a competing video service.

This dissertation demonstrates systems that provide secrecy guaran-

tees to public cloud users without trusting the platform provider. These sys-

tems leverage a hardware isolation mechanism that stops the cloud provider

from accessing secrets while preserving much of the application’s performance:

Trusted Execution Environments. (TEEs). Hardware (i.e., the processor) en-

sures that only TEE code can access TEE data; hardware protects secrets from

all software that the provider controls, including privileged software.

TEEs have found their way into commodity CPUs. Examples of TEEs

include Intel SGX [Int14], RISC-V Keystone [LKC+18, LKS+20], and the se-

cure world of ARM TrustZone [Lim]. TEEs have also been proposed for

2

GPUs [VVB18,JTK+19], though none are available on the market.

While essential to the work described here, TEEs alone are not suffi-

cient to provide meaningful security. One glaring drawback is that prevalent

side channels undermine TEE isolation. Intel SGX has accumulated a ro-

bust catalog of exploits [XCP15,VBMW+18,GESM17,BCD+18]. While these

vulnerabilities certainly call into question the security of TEEs as they exist

today, these exploits do not point to fundamental problems with TEEs; in fact,

Keystone [LKS+20] designs have already removed many side-channel exploits,

e.g., by way-partitioning the last-level cache. Rather than address bugs and

oversights that hardware can and should be solve, the work described here

focuses on core shortcomings of TEE designs and shows how system software

can mitigate them.

We have identified two significant areas where TEEs do not provide

meaningful security as designed. First, data-processing services are often

closed source. Service providers have incentives to keep their code secret,

forcing the user to trust them with secrets to use the service. Second, offload-

ing computation to GPUs leaves applications open to easily exploitable timing

attacks.

1.1 Protecting secrets from the services that process
them

Operators of user-facing services often keep their code proprietary to

protect their competitive advantage: obscuring their service’s details creates a

3

barrier protecting ideas they spent time and money developing. An unfortu-

nate side effect is that users of the service have little visibility into what the

code is doing. Any code inside a TEE can access all TEE data— including

user secrets—and has the freedom to communicate anything it can access to

the outside world. Proprietary code, by definition, cannot be vetted to ensure

it does not exercise that freedom (accidentally or intentionally). Furthermore,

sometimes the cloud provider is the service provider, so collusion between

application code in the TEE and the platform is also a concern.

Ryoan [HZX+16, HZX+18] is a system designed to address this prob-

lem. Ryoan is a distributed sandbox that allows users to keep their data

secret without trusting the software stack, developers, or administrators of

these services. The core idea is to confine the code that users cannot vet (i.e.,

untrusted code). Service code can remain proprietary, but the Ryoan sand-

box carefully controls its communication with the outside world, confining

the service. Confining untrusted code is a longstanding problem that remains

technically challenging [Lam73]. Ryoan meets the challenges of confinement

by taking advantage of TEEs and by assuming a request-oriented data model.

Confined services only process input once and cannot read or write persistent

state (storage) after receiving the input. This model limits Ryoan’s applica-

bility to request-oriented server applications—but such servers are the most

common way to bring scalable services to large numbers of users.

A näıve (but secure) approach to a confinement system like Ryoan re-

stricts services to a single TEE. This näıve design has performance limitations

4

because TEEs cannot span multiple processors, and it raises privilege sepa-

ration concerns since some services involve code and interests from mutually

distrustful parties. Rather than resigning applications to those restrictions,

Ryoan allows providers to distribute their services across many processors.

Ryoan also provides a coarse-grained information flow control mechanism to

protect service provider secrets and user secrets when they flow through TEEs

containing code that the service providers themselves do not trust. With these

mechanisms, Ryoan achieves reasonable flexibility for service providers without

sacrificing security.

1.2 Securely offloading computation to cloud GPUs

Performance improvements enabled by GPUs have driven the success of

machine learning and computer vision in application domains such as medicine

[Hem17, SFB+15], finance [GGKSC13], insurance [NVI16], and communica-

tion [NVI17a]. Cloud providers have taken notice; today, GPUs are available

on every major public cloud. However, GPU computation is still insecure in

public clouds: without hardware intervention, the provider is free to examine

GPU state at will and extract secret data.

GPU TEEs (when realized) will protect secrets from cloud providers

while they are on GPUs, but offloading computation to a GPU involves com-

munication over the PCI bus1. While GPU TEEs protect the content of com-

1We focus on discrete, PCI-attached GPUs because that is the form factor of the best
performing GPUs at time of writing.

5

munication (e.g., by encryption for Graviton TEEs [VVB18]), they do not

protect the pattern of communication. Privileged software allows platform

providers to observe the pattern of PCI communication. To show the infor-

mation leaked in GPU communication patterns, we demonstrate an attack on

deep neural network image recognition. We trained a classifier on the GPU

communication patterns of an image recognition application for two image

classes from ImageNet [DDS+09]. Our model was able to distinguish the im-

ages of the two classes with 78% accuracy even though it only had access to

timing information (never the images themselves).

We designed Telekine so that users can securely offload computation

to cloud GPUs. Telekine ensures that communication between the user’s

CPU code and the offloaded GPU computation does not leak by transforming

GPU API calls into data oblivious streams. Telekine constructs data-oblivious

streams by reducing all API calls to a sequence of code execution (launchK-

ernel) and data movement (memcpy) commands. It then schedules these op-

erations at a fixed rate, possibly creating new operations, or splitting memcpy

operations into fixed-size pieces. Fixed-sized, fixed-rate communication en-

sures that any observable patterns are independent of the input data and,

therefore, devoid of side-channel information. Fixed-rate communication is

not a novel way to eliminate side channels, but Telekine’s design shows how

to apply it efficiently to modern GPU-based computing.

6

1.3 Writing conventions and organization

Research contributions are almost always the result of the collabora-

tive effort of many minds. In the spirit of that, I will maintain the convention

of using second-person pronouns (our/we) throughout the document. I sum-

marize my specific contributions in footnotes at the beginning of the relevant

chapters.

The rest of this document follows this organization. First, we provide

a detailed description of the public cloud threat model in Chapter 2, followed

by background material on TEEs and GPUs in Chapter 3. Then we describe

the designs of Ryoan and Telekine in Chapter 4 and Chapter 5, respectively.

Finally, we put the work in context by discussing related work in Chapter 6

and our conclusions in Chapter 7

7

Chapter 2

The Malicious Public Cloud Threat Model

To completely remove providers of public clouds (platform providers)

from all levels of trust, we make the conservative assumption that the platform

provider is malicious. The platform provider is a powerful adversary who

controls all software executing on the machines that they control. This control

extends into privileged software, i.e., the operating system and the hypervisor.

By construction, systems that protect data in this model will also protect

against weaker adversaries. For instance, the power of attackers who have

compromised some part of the platform must be a subset of the cloud provider’s

power, and it is in the platform provider’s power to create fake tenants and

mount side-channel attacks.

On the other hand, users must trust hardware and the software of the

systems described in this document. These are reasonable requirements since

the cloud provider has no control over either of these things. CPUs and GPUs

are difficult to modify because their physical packaging is resistant to tam-

pering. Physical modification of these computing devices, especially at scale,

would be expensive for a platform provider so it is reasonable to expect them

to be deployed without modification. Users must assume that hardware man-

ufacturers are not colluding with platform providers, unless the hardware can

8

be verified or made open-source for vetting, which is not true of commodity

processors. However, hardware providers have little incentive to design inse-

cure hardware: their business model relies on selling processors rather than

data. A reputation for an insecure product could hinder processor sales in an

increasingly crowded market. The systems described in this dissertation are

open-source, allowing users (or communities of users) to vet and validate their

implementation, making the assumption of trust weaker.

A caveat to trusting hardware is that there are many examples of failed

isolation [HJM+19,HJM+20] (often due to side channels), making much of the

current hardware space unfit for purpose. We take the emergence of commer-

cial TEEs as a sign that manufacturers are willing to take security seriously

and fix isolation. In the limit, software can be augmented with orthogonal

techniques to achieve isolation. There is additional detail about current hard-

ware limitations and known side channels in section 3.2.2.

Denial of service attacks. Denial of service is outside of the scope of our

threat model. The platform provider can always leverage their control to refuse

to scheduler our system or arbitrarily block communication between the client

and the different pieces of our systems.

9

Chapter 3

Background

Providing security guarantees for computation on an untrusted plat-

form is an active area of research. In almost all cases, users must trust hard-

ware. The exceptions are cryptographic techniques which do not require trust

in hardware but greatly magnify the computational and storage costs of the

computation [Gen09]. The choice to use a public cloud is an economic one;

users can always purchase hardware that they control to run their software

securely. Our position is that trusting only hardware is a reasonable compro-

mise, preserving the cloud’s economic advantages while providing the building

blocks for meaningful security.

The work described here uses trusted CPUs and GPUs, both of which

we expect to provide trusted execution environments. Commodity CPUs pro-

vide trusted execution environments (TEEs) today. Robust research proposals

for GPU TEEs exist, but none have yet made their way into the market.

3.1 Attesting hardware authenticity to a remote user

Hardware hosting computation in a malicious public cloud must be able

to prove its authenticity to users. Without proof, the cloud provider can lie

10

about the presence of secure hardware and steal a user’s secret data.

The process of proving that a piece of hardware is genuine is called

attestation. Specific attestation mechanisms vary, but they all adopt the same

general form:

1. The manufacturer embeds a secret in the hardware. The embedding pro-

cess comes with some reasonable guarantee that malicious actors cannot

recover the secret by inspecting the hardware. For instance, a CPU se-

cret might be constructed with physically unclonable properties of the

manufactured hardware and never directly exposed to software.

2. Upon request, hardware uses that secret to sign a message cryptograph-

ically. This message usually contains some form of nonce from the user

so that an attacker cannot reuse messages, and possibly some additional

information about hardware state, e.g., SGX signs a description of the

program loaded into the TEE.

3. The remote user receives the message and signature, then goes through a

validation process. Validation depends on the type of signature; it could

be validated against a known public key or forwarded to a trusted service

for validation.

3.2 Trusted Execution Environments

Historically, software system designers have leveraged hardware isola-

tion mechanisms as the basis for secure systems. The user/kernel processor

11

mode bit and page tables on CPUs and GPUs are examples of hardware-

enforced isolation mechanisms. These primitives have found favor for decades

because they are efficiently implemented in hardware, and have clear semantics

that system software can use as the basis for security.

Hardware-supported TEEs are yet another isolation mechanism that is

useful for protecting secrets in the malicious public cloud threat model. TEEs

are uniquely useful because they separate isolation from resource management

(e.g., scheduling on processor cores, and memory management). Other iso-

lation mechanisms allow code to keep secrets; e.g., the user/kernel processor

mode bit prevents some code (user-level code) from reading the secrets of

others (kernel-level code). However, user-level code cannot keep secrets from

kernel-level code. Without an additional mechanism, users cannot keep secrets

from the platform provider since they control kernel-level code. TEEs allow

the platform provider to remain in control of resources while preventing them

from accessing user secrets.

TEE designs have been realized by different hardware vendors for CPUs.

Intel has shipped Software Guard eXtensions (SGX) [Int14], which is described

in more detail below. ARM’s offering is called TrustZone [Lim]. TrustZone

provides a “secure world” with provisions for direct control over hardware,

but different chip designs vary on how much hardware is under secure world

control. Direct control over hardware (e.g., control over the PCI bus) makes

secure communication easier because it removes other software’s power to ob-

serve the communication. However, x86 CPUs are still the predominant plat-

12

form in public clouds, and it is unclear how compatible secure world control of

hardware would be with the other interests of cloud providers. Finally Key-

stone [LKC+18,LKS+20] is a TEE design for the open-source RISC-V architec-

ture. Keystone has a modular design well suited to selecting the appropriate

level of security for a given threat model.

TEE designs have been proposed by researchers for GPUs. Gravi-

ton [VVB18] proposes changes to GPU firmware allowing a remote user or

a CPU enclave to establish a secure channel for control and data with the

GPU. HIX [JTK+19] extends CPU enclaves with trusted MMIO protections

to protect communication with the GPU rather than relying on cryptography.

The work in this dissertation builds specifically on Intel Software Guard

Extensions [Int14] on CPUs and the proposed Graviton [VVB18] TEEs for

GPUs. The remainder of this chapter provides background on those specific

TEEs.

3.2.1 Intel Software Guard Extensions

Software Guard Extensions (SGX) [Int14] provide TEEs on recent Intel

processors. SGX calls each TEE an enclave. An enclave is a region in virtual

memory that is protected by hardware. The contents of an enclave are only

visible to code that is mapped into the enclave’s virtual memory region; this

code is said to be enclave code. Enclave code can read its enclave and all

non-enclave (mapped) memory. Multiple enclaves may exist in a single virtual

address space, but they may not read memory from each other’s regions. En-

13

clave code still runs in unprivileged mode (ring 3), and the CPU faults on any

instruction that would raise its privilege level.

Memory protection. Processors that support SGX maintain a special phys-

ical memory pool called the Enclave Page Cache (EPC). Physical memory can

only be mapped into an enclave if it comes from the EPC; complementarily,

hardware only allows one enclave to use an EPC page at a time. Data and

code can be paged in and out of the EPC by the operating system through

purpose-built SGX instructions, but pages are encrypted and MACed by the

processor on page-out and then verified and decrypted on page-in.

Memory in the EPC is encrypted by the processor, preventing attackers

from stealing plaintext data using bus sniffing attacks. SGX leverages the

processor’s cache structure to ameliorate the performance overheads involved

in encryption: data is is always unencrypted when it is on the chip and is only

encrypted and decrypted when it moves to and from main memory.

SGX remote attestation. Attesting an SGX processor to a remote user

follows the procedure outlined in Section 3.1 closely. The CPU signs a state-

ment about a particular enclave that the platform provider must forward to

the user. The user can validate the statement by querying a trusted attestation

service. If validation succeeds, the user can be sure they are communicating

with a valid SGX processor.

In addition to proving that the CPU is a real SGX CPU, attestations

14

serve to bind identity to an enclave. For our purposes, it is enough to think of

an enclave identity as a hash of the enclave’s initial state, i.e., valid memory

contents, permissions, and relative position in the enclave. Our trust of the

hardware extends to these identities; particularly, we assume that the cloud

provider cannot misrepresent the initial state of an enclave under standard

cryptographic assumptions. SGX also supports binding enclaves to a specific

public.

Knowing the initial state of an enclave allows users to reason about

security. An enclave’s state can only be mutated by enclave code after initial-

ization. Code that can mutate enclave state must itself be part of the attested

initial state.

Hardware threads. CPUs typically have several hardware threads. Hard-

ware threads are execution contexts that may execute code concurrently. With

respect to SGX, each hardware thread is either in enclave mode or it is not.

A thread issues an enclave entry instruction to enter enclave mode. In enclave

mode, every instruction must reside on an EPC page that belongs to the en-

clave that the thread entered. This restriction keeps the operating system from

mapping malicious code pages, which would cause the thread to misbehave.

Threads are only allowed to enter enclaves at specifically defined entry

points. These points are written into enclave memory (and so are part of the

state verified during remote attestation).

If any hardware thread receives an interrupt while in enclave mode, the

15

processor stores its registers in enclave memory and clears them before the

thread is taken out of enclave mode to handle the interrupt. The context can

be restored later by another SGX instruction.

3.2.2 Hardware limitations

There are some known security limitations in commodity hardware.

We believe the hardware manufacturers should address these limitations (and

any additional limitations discovered in the future). Each of these limitations

erodes the security afforded by the systems we design to use them. Part of

the purpose of building prototype systems is to determine how its security

guarantees depend on the security guarantees of the hardware they rely on,

thereby motivating fixes for hardware-based limitations.

Transient instruction-based attacks. Transient instructions are proces-

sor instructions that are speculatively executed and update the processor’s

micro-architectural state but are aborted for some reason and do not update

the architectural state. Meltdown [LSG+18] and Spectre [KGG+18] are attacks

that exploit out of order execution and speculative execution, respectively, to

execute transient instructions. These transient instructions influence the pro-

cessor’s micro-architectural state, creating covert channels; both attacks use

the processor cache as a proof of concept. Meltdown is specific to Intel proces-

sors and allows user-level programs to read arbitrary kernel memory. Spectre

applies to a broader range of processors (including Intel, AMD, and ARM), but

16

is more difficult to exploit. It allows the attacker to read memory belonging

to a victim running in a separate address space.

There have been successful Spectre attacks that violate SGX isolation,

allowing non-enclave code to read enclave memory [CCX+18,OMA+18].

SGX page faults. On current Intel processors, privileged software can ma-

nipulate the page tables of an enclave to observe a page-granularity trace of

its code and data. Xu et al. demonstrated attacks that use application-level

information to recreate fine-grained secrets from these coarse addresses, e.g.,

words in a document and object outlines in an image [XCP15].

There is active research on detecting or preventing these attacks using

other processor features, e.g., transactional memory [SLKP17, CZRZ17], or

monitoring SGX data structures [OTK+18]. If SGX enclaves serviced their

own page faults, this leakage channel would disappear.

Address bus monitoring. Although SGX encrypts data in RAM, if an

attacker monitors the address bus via a sniffer or a modified RAM chip, it

forms a cache line-granularity side or covert channel. No software system can

prevent such attacks without new architectural changes.

Processor monitoring. Processor monitoring units (PMUs) provide ex-

tensive performance counter information for on-chip events. If the processor

updates the PMU about events that occur in enclave-protected execution, the

17

operating system could use the information as a covert channel to learn secrets

via untrusted code, which could modulate its behavior, e.g., to inflate certain

event counts.

According to measurements on Skylake processors, the processor dis-

ables certain monitoring facilities during enclave execution (e.g., Precise Event-

Based Sampling (PEBS)), however the uncore counters (e.g., last level cache

misses) are enabled [CD16]. Effective attacks based on branch history have

been demonstrated [LSG+17]. It is unknown at this time how effective other

attacks based on processor monitoring will be.

Cache timing. Two processes resident on the same core can use cache tim-

ing to obtain fine-grained information about each other. For instance, Zhang

et al. (on an Amazon-EC2-like platform) extracted ElGamal keys from a non-

colluding VM [ZJRR12]. The problem is worse when processes can collude;

others have demonstrated high-bandwidth covert channels using cache behav-

ior [XBJ+11, WX15]. There are hardware proposals to address cache timing

attacks [LWL15].

3.3 GPUs

Current GPU software stacks prioritize high performance and program-

mer convenience over security. While a given instance might, at times, have

exclusive access to a physical GPU, the provider can migrate instances, ex-

posing GPU state. Modern conveniences like elastic GPUs [Amaa, aws] make

18

GPUs available over a network connection.

3.3.1 PCIe and device communication

At the hardware level, GPUs can be connected to the system directly

on the CPU memory interconnect (integrated) or by the PCIe bus (discrete).

PCIe-attached GPUs are overwhelmingly preferred in performance-focused set-

tings because this organization enables the GPU to implement a separate

memory subsystem using techniques that enable dramatically higher memory

bandwidth. Memory bandwidth is the first-order determinant for performance

for most GPU workloads. For example, current NVIDIA cards tout a peak

memory bandwidth over 600 GB/s [rtx18], several times higher than the best

current peak CPU memory bandwidth. Therefore, we focus our attention on

PCIe-attached GPUs, as this is the dominant platform for performance.

The PCIe interfaces provide two forms of communication: memory-

mapped I/O (MMIO) and direct memory access (DMA). MMIO is used to

re-purpose regions of the physical memory address space for device communi-

cation. Contiguous physical ranges, or BARs (base-address-regions), are re-

served by the hardware, and hardware transparently redirects loads and stores

to those regions to the device. MMIO is implemented by configuring CPU

registers with metadata describing a base address and length based on the

system memory address map, which is configured by the BIOS (or UEFI) at

boot. MMIO accesses are forwarded to the PCIe root complex, converted to

PCIe packets, and routed to the GPU. Modern GPUs use MMIO BARs to

19

expose hardware registers for configuring the device and frequently accessed

onboard device memory, e.g., command queues for controlling computation.

DMA enables the GPU hardware to directly access CPU memory with-

out the help of the CPU, using address translation through a host-configured

IOMMU to implement memory protection and ensure the device only reads

and writes data belonging to the application it is serving. GPUs rely on DMA

for bulk data transfer.

The host hypervisor and operating system control the PCIe bus, which

routes packets to multiple devices connected to the PCIe root complex in a tree

topology. Packets in transit to/from the GPU may be visible to other devices.

Privileged host software may change the routing topology dynamically and

install pseudo-devices that allow it to sniff traffic. Securing communication

with the GPU must defend against these passive and active PCIe attacks.

Applications use GPUs through high-level, vendor-provided APIs such

as CUDA [NVIa] and HIP [HIP]; they include a user-level runtime and OS-

level driver that communicate through a combination of ioctl system calls

and memory-mapped command queues. The driver is responsible for creating

mappings from virtual memory to physical MMIO regions. After these privi-

leged operations are complete, any software that has a mapping (user or OS)

may communicate directly with the device using registers or command queues

exposed through the MMIO regions.

While memory management, synchronization, and other features (e.g.,

20

IPC and power management) require interaction with the driver state (e.g.,

creating and managing memory mappings), workloads that pre-allocate all of

their required GPU memory and use only data transfer and kernel launch

primitives can function completely by writing commands into the GPU’s com-

mand queue. It is possible to construct and submit these commands without

referring to any state maintained by either the runtime or the driver.

3.3.2 GPU Trusted Execution Environments

While there are no GPU TEEs available on the market today, Gravi-

ton [VVB18] is a detailed proposal from the literature that provides the basic

functionality that any GPU TEE (or indeed any TEE) should provide. Gravi-

ton provides secrecy for GPU code and input data, integrity for the GPU com-

putation, and remote attestation for the computation’s initial state. Graviton

achieves most of its functionality by changing the GPU firmware, so it does not

require extensive changes to the GPU hardware itself. Modern GPU firmware

runs on a fully programmable control processor [NVIc], making Graviton’s

changes achievable. We explain GPU TEE functionality by saying what the

GPU does, but the implementation could be firmware, hardware, or both.

A secure channel ensures the integrity, secrecy, and ordering of the

commands sent to the GPU. Before computation begins, the client machine

and the GPU agree on a shared symmetric key via a key exchange protocol

(e.g., Diffie-Hellman). The client uses this key to send commands using a

protocol like transport layer security (TLS), which provides a secure channel.

21

The GPU assures the integrity of the computation. The GPU attests

the initial execution conditions to the remote user, who can verify that the

provider initialized the GPU with code and data loaded into the expected ad-

dress ranges with the expected permissions and that the hardware generating

the attestation is genuine. There are many variations on remote attestation,

but it is a common feature for modern enclaves like SGX [CD16] and Key-

stone [LKC+18].

The GPU divides its memory into untrusted and trusted regions (rem-

iniscent of SGX’s EPC). The untrusted host OS or Hypervisor can DMA into

untrusted GPU memory, enabling efficient data transfers; the GPU can then

copy data between untrusted GPU memory and trusted memory. This mech-

anism provides GPU memory protection even though the IOMMU is under

control of the untrusted kernel. Graviton disables unified memory, allowing

privileged CPU code to demand page GPU memory and exposes side-channel

memory access information.

The GPU TEE should turn off or refuse to report the state of any per-

formance counters. Recent GPU side-channel attacks [NNQAG18, FGBR18]

have successfully used timing data from GPU performance counters. Similarly,

the GPU TEE should avoid reporting the values of physical sensors such as

temperature or power use. These sensors can leak information about execution

since the GPU draws different amount of power or generates different amounts

of heat depending on the workload. Preventing programmatic access to sensors

does not prevent an adversary from measuring these properties externally; to

22

defend against an adversary with that power would require orthogonal tech-

niques not discussed here.

23

Chapter 4

Ryoan: A Distributed Sandbox for Untrusted
Computation on Secret Data

Trusted Execution Environments (TEEs) prevent public cloud providers

from directly observing secret data during execution, but they do nothing to

prevent code inside the TEE from divulging secrets. While this is not a prob-

lem when the data owner controls (or can vet) TEE code, it is a problem for

the vast majority of public-cloud-hosted applications. Data-processing services

like image editing (Pixlr [Pix]), tax preparation (TurboTax [Int]), and personal

health analyses (23andMe [23ab]) are often composed of proprietary code con-

trolled and deployed by third parties. Vetting code is not an option for these

services since their source code contains secrets that the service providers want

to protect.

This chapter is based on the previous publication: “Ryoan: A Distributed Sandbox
for Untrusted Computation on Secret data”, by Tyler Hunt, Zhiting Zhu, Yuanzhong Xu,
Simon Peter, and Emmett Witchel in the ACM Transactions on Computer Systems (TOCS),
Vol.35, No.4, December 2018 [HZX+18]. That publication is an expanded version of the
original work which was published with the same title and authors in the proceedings 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah,
Georgia, USA, November, 2016 [HZX+16]. My contributions to these publications include
designing the Ryoan execution model and contributing to its implementation, porting Native
Client to SGX, implementing copy-on-write checkpointing, building the image processing
application, and evaluating the performance overheads.

24

User inputs to data-processing services are often sensitive, such as tax

documents and health data, which creates a dilemma for the user. If users want

to keep their data secret, they either have to give up using the services or hope

that they can be trusted. Without additional mechanisms, there is nothing to

prevent service software from leaking data (intentionally or unintentionally)

beyond the confines of a TEE.

Companies providing data-processing services for users often wish to

outsource part of the computation to third-party cloud services, a practice

called “software as a service (SaaS).” SaaS encourages the decomposition of

problems into specialized pieces that the service providers can assemble on

behalf of a user. For instance, 23andMe might want to combine thier health

expertise with Amazon’s machine learning expertise and robust cloud infras-

tructure. However, 23andMe now finds itself a user of Amazon’s machine

learning service and faces the same dilemma—it must disclose proprietary cor-

relations between health data and various diseases to use Amazon’s machine

learning service. In these scenarios, the owner of secret data has no control

over the data-processing service.

We propose Ryoan1, a distributed sandbox that allows users to keep

their data secret in data-processing services, without trusting the software

stack, developers, or administrators of these services. First, Ryoan provides

sandbox instances to confine individual data-processing modules and prevent

1Ryoan is a sandbox, and its name is inspired by a famous dry landscape Zen garden
that stimulates contemplation (Ryōan-ji).

25

them from leaking data; second, Ryoan uses TEEs to allow a remote user

to verify the integrity of the sandbox instances and protect their execution;

third, Ryoan allows confined code modules to communicate in controlled ways,

enabling flexible delegation among mutually distrustful parties.

Ryoan faces issues beyond those faced by TEE-based shielding systems

such as Haven [BPH15]. TEEs protect an application that the user trusts and

does not collude with the infrastructure. In Ryoan’s threat model, neither the

application nor the infrastructure is under the user’s control. The applica-

tion and the infrastructure may try to steal the user’s secrets by colluding via

covert channels—even if the application itself is isolated from the provider’s

infrastructure using enclave protection. Ryoan’s goal is to prevent such covert

channels and stop an untrusted application from intentionally and covertly us-

ing users’ data to modulate events like system call arguments or I/O patterns,

which are visible to the infrastructure.

Ryoan confines untrusted modules that make up an untrusted applica-

tion. Confining untrusted code is a longstanding problem that remains tech-

nically challenging [Lam73]. Ryoan meets the challenges of confinement by

taking advantage of hardware-supported enclave protection and assuming a

request-oriented data model. Confined modules only process input once and

can neither read nor write persistent storage after receiving the input. This

model limits Ryoan’s applicability to request-oriented server applications—

but such servers are the most common way to bring scalable, data-processing

services to large numbers of users.

26

Ryoan uses multiple instances of a trusted sandbox to confine an appli-

cation. We based the trusted sandbox used in the Ryoan prototype on Native

Client (NaCl) [YSD+09, SMB+10], a state-of-the-art, user-level sandbox (it

can be built as a standalone binary, independent from the browser). NaCl

uses compiler-based techniques to confine untrusted code rather than relying

on address space separation, a property necessary to be compatible with SGX

enclaves2. The Ryoan sandbox safeguards secrets by controlling explicit I/O

channels, and covert channels such as system call traces and data sizes.

The Ryoan prototype uses SGX to provide hardware enclaves. Each

SGX enclave contains a sandbox instance that loads and executes untrusted

modules. The sandbox instances communicate with each other to form a dis-

tributed sandbox that enforces strong privacy guarantees for all participating

parties—the users and different service providers. Ryoan provides taint labels

(similar to secrecy labels from DIFC [ML97]) that users and service providers

define, allowing them to ensure that Ryoan confines any module that processes

their secrets.

Contributions. Ryoan’s security goal is simple: prevent leakage of secret

data. However, confining services over which the user has no control is chal-

lenging without a centralized trusted platform. We make the following contri-

butions:

2“Enclave” is what Intel calls an SGX TEE

27

� A new execution model that allows mutually distrustful parties to

process sensitive data in a distributed fashion on untrusted infrastructure.

� The design and implementation of a prototype distributed sandbox

that confines untrusted code modules (possibly on different machines) and

enforces I/O policies that prevent leakage of secrets.

� Several case studies of real-world application scenarios to demon-

strate how they benefit from the secrecy guarantees of Ryoan, including an

image processing system, an email spam/virus filter, a personal health analy-

sis tool, and a machine translator.

� Evaluation of our prototype’s performance characteristics by measur-

ing the execution overheads of each of its building blocks: the SGX enclave,

confinement, and checkpoint/rollback. The evaluation is based on both SGX

hardware and simulation.

Application limitations. Ryoan forces applications to adopt a request-

oriented data model. This data model is sufficient for batch processing of

mostly unique inputs. There are application behaviors that do not map

cleanly—or at all—onto Ryoan’s data model. Below are classes of applica-

tion behavior that Ryoan does not support.

Storage. Ryoan is not suited for storage; it is intended to safeguard compu-

tation on sensitive inputs. Once a Ryoan module has seen user data, Ryoan

prevents the module from writing to persistent storage.

28

Network metadata. Ryoan takes no steps to protect network connection

metadata like the user’s IP address or the length of packets. Ryoan protects

user data but does not protect connection metadata (though systems exist

that protect connection metadata, e.g., Tor [DMS04] hides a client’s network

address from the server).

Repeated computations on the same/similar input data. Ryoan can-

not eliminate all timing channels, but it does mitigate their effects with its

request-oriented data model. For services that repeatedly process the same or

very similar inputs, Ryoan might leak too much confidential information. For

example, some online photo services intend for users to repeatedly read and

edit photos. Ryoan is not well suited for these services because with enough

repeated input, untrusted modules can exfiltrate the input data.

Multi-user computation. If a single request contains secrets from multiple,

mutually distrusting users, Ryoan cannot isolate them. Ryoan tracks data

flows at a request granularity, and applications are free to mix data within

a single request, even if that data comes from different, mutually distrusting

users.

29

4.1 Ryoan’s speciation of the malicious public cloud
threat model

We consider multiple, mutually distrustful parties involved in data-

processing services. A service provider is not trusted by the users of the service

to keep data secret; if the service provider outsources part of the computation

to other service providers, it becomes a user of those service providers and does

not trust them to provide secrecy either. Each service provider can deploy its

software on its computational platform, or use a third-party cloud platform

that no service provider trusts. We assume that users and providers trust their

code and platform, but do not trust each other’s code or platforms. Everyone

must trust Ryoan and SGX.

A service provider might be the same as its computational platform

provider, and the two might collude to steal secrets from their input data. Be-

sides directly communicating data, the untrusted code may use covert channels

via software interfaces, such as system call sequences and arguments, to com-

municate bits from the user’s input to the platform.

Ryoan takes no steps to prevent each party from leaking its own secrets

intentionally or via bugs. This model is suited for the case where the service

provider deploys code on its own computational platform (see section 4.3.3 for

more discussion). When executing on the platform of another provider, Ryoan

provides protections against a malicious OS. For instance, Ryoan validates

system calls to prevent Iago attacks [CS13] (similar to Haven [BPH15], Ink-

tag [HKD+13], Sego [KDL+16], SCONE [ATG+16], and Graphene-SGX [TPV17]),

30

and encrypts communication to protect data secrecy. Application design-

ers may use orthogonal techniques [RLT15, CVDBDS09, CDE08, ZWC+13,

KMPS11] to mitigate the unintentional disclosure of application secrets. Simi-

larly, we assume computational platform providers are responsible for protect-

ing their own secrets (e.g., the administrator’s password).

Although we consider covert channels based on software interfaces like

system calls, we do not consider side or covert channels based on hardware lim-

itations (§3.2.2) or execution time. Untrusted enclaves can leak bits by mod-

ulating their cache accesses, page accesses, execution time, etc. Such chan-

nels are themselves technically difficult and often require dedicated systems

to address adequately [LCW13, ZAM12, KPMR12, CLD16, FWZ+16]. Many

well-regarded secure system designs factor-out side/covert channels based on

hardware limitations or execution time, at least to some degree [VEK+07,ZB-

wKM06,LGV+09,PBR+14,BPH15], because doing so enables progress in de-

signing and building secure systems. While we do not claim to prevent the

execution-time channel, Ryoan does limit the use of this channel to once per

request (see section 4.3.1 for a more robust explanation).

4.2 Native Client background

Google Native Client (NaCl) [YSD+09,SMB+10] is a sandbox for run-

ning Arm/x86/x86-64 native code (a NaCl module) using software fault iso-

lation. NaCl consists of a verifier and a service runtime. Application code is

compiled by a specialized compiler that lays out instructions in a way that can

31

be easily validated by the verifier, so the compiler need not be trusted. The

verifier disassembles the binary and validates the disassembled instructions as

being safe to execute, to guarantee that the untrusted module cannot break

out of NaCl’s SFI sandbox.

NaCl executes system calls on behalf of the loaded application. System

calls in the application transfer control to the NaCl runtime, which determines

the proper action. Ryoan cannot allow the application to use its system calls to

pass information to the underlying operating system. For example, if Ryoan

passed read system calls from the application directly to the platform, the

application could use the size and number of the calls to encode information

about the secret data it is processing. We discuss the details of the confinement

provided by Ryoan in Section 4.3.5.

Rowhammer attacks. Attackers can use rowhammer attacks from confined

code to break older versions of the NaCl sandbox [KDK+14]. In a rowhammer

attack, the adversary forces the processor to write a cache line back to memory

rapidly, flipping bits in otherwise unwriteable memory locations. Modifying

normally protected memory allows untrusted code to break NaCl’s sandbox by

violating its invariants. Newer versions of NaCl disallow CLFLUSH instructions,

a core mechanism used in the original rowhammer attack [KDK+14]. There

have been successful rowhammer attacks against NaCl using non-temporal

stores [QS16] (and NaCl forbade non-temporal stores in response).

Regardless of NaCl’s vulnerability to rowhammer attacks, any rowham-

32

mer attack mounted against an SGX enclave would cause memory integrity

checks to fail when an affected cache line was read [JLLK17]. Thus any

rowhammer attack mounted by code inside our outside the enclave becomes a

denial-of-service attack (out of scope).

Spectre and meltdown attacks. Native Client’s sandboxing mechanisms

prevent sandboxed code from mounting the Meltdown [LSG+18] attack. Melt-

down requires the attacker to issue memory operations for kernel addresses,

which become arguments to speculatively executed instructions; Native Client

restricts the memory addresses that untrusted code can only reference a 4GB

range, which never overlaps with kernel addresses.

Native Client’s sandboxing mechanisms also make it more challenging

to mount Spectre attacks. Spectre attacks rely on the attacker’s ability to

train the hardware branch predictor. The attacker trains the branch predictor

to make wrong predictions during the execution of the victim. Confined Na-

tive Client code is always position-independent, and the targets of its indirect

branches must be aligned blocks within a 4GB range. These measures reduce

the attacker’s freedom in manipulating the branch predictor, thereby shrinking

the attack surface.

4.3 Design

Ryoan is a distributed sandbox that executes a directed acyclic graph

(DAG) of communicating, untrusted modules which operate on secret data.

33

Privileged Software (OS/Hypervisor)

Linux Process

SGX Enclave

Sandbox Instance

Module

Untrusted

Trusted

Trampoline and Buffer

Hardware

Notation:

Figure 4.1: One of several sandbox instances that make up a Ryoan deploy-
ment. The privileged software includes an operating system and an optional
hypervisor.

Ryoan’s primary job is to prevent the modules from communicating any se-

cret data outside the confines of the system (including external hosts and the

platform’s privileged software).

A module consists of code, initialized data, and the maximum size of

dynamically allocated memory. For backward compatibility, Ryoan modules

support programs written for libc, including fully compiled languages and

runtimes built on top of libc. A Ryoan module can be a Linux program, or

it could contain a library operating system [BPH15]. SGX disallows ring 0

execution in enclaves, so Ryoan cannot directly support an operating system

or hypervisor.

Confining modules without trusting privileged software (i.e., the op-

erating system and hypervisor) is Ryoan’s chief technical challenge. In the

worst case, the modules and privileged software can collude to steal secrets.

34

Sandbox InstanceEnclave Description

Hash Hash Module

HardwareSGX

Signature
Meta

Signature

Figure 4.2: The Ryoan chain of trust. SGX hardware attests that a valid
sandbox instance is executing (Hash) with an intended SGX configuration
(Meta). The sandbox instance ensures that it loaded the expected binary with
a signed hash from the software provider (gray).

The possibility of collusion forces Ryoan to consider any behavior visible to

privileged software (henceforth externally visible behavior) to be a potential

channel for leaking secrets.

Figure 4.1 shows a single instance of the distributed sandbox. A princi-

pal (e.g., a company providing software as a service) can contribute a module

that Ryoan loads and confines, enabling the module to operate on secret data

safely. We will refer to any principle that provides a module as a module

provider. The NaCl sandbox uses a load-time code validator to ensure that

the module cannot violate the sandbox by accessing memory outside its ad-

dress range or making system calls without Ryoan intervention.

Ryoan assures its secrecy and integrity by executing in hardware-protected

enclaves provided by SGX. Hardware attests to Ryoan’s initial state, and in

doing so, hardware becomes the anchor for Ryoan’s chain of trust (Figure 4.2).

SGX generates an unforgeable remote attestation for the user that a sandbox

instance executes in an enclave on the platform. The user can establish an

encrypted channel that they know terminates within that sandbox instance.

35

SGX guarantees the enclave cryptographic secrecy and integrity against ma-

nipulation by privileged software.

A master enclave creates all sandbox instances, and they establish cryp-

tographically protected communication channels among themselves as speci-

fied by the user. Once the providers have instantiated the modules, the master

forwards attestations for each module to the user. The user verifies that the

configuration matches their specifications. Then the user inputs their secret

data. Ryoan provides simple labels to protect secret data added by modules in

the DAG (§4.3.3). All Ryoan’s sandbox instances form a distributed sandbox

that protects secret input data from being leaked by the untrusted modules

that operate on it.

Ryoan prevents modules from leaking sensitive data by decoupling ex-

ternally visible behaviors from the content of secret data. Anything the module

does in response to input data is in danger of being a side channel that com-

municates it. Ryoan, therefore, makes the module’s externally visible behavior

independent of the input data. SGX hardware limits externally visible behav-

iors to explicit stores to unprotected memory and the use of system services

(system calls). The NaCl toolchain and runtime eliminate unprotected stores.

Ryoan eliminates most system calls by providing their functionality

from within NaCl. For example, Ryoan provides mmap functionality by man-

aging a fixed-sized memory pool within the SGX enclave. However, untrusted

modules must read input and write output, so Ryoan provides a restricted

I/O model that prevents data leaks (e.g., the output size is a fixed function of

36

Module property Enforced by Reason
OS cannot access module memory (§3.2.1). SGX Security
Initial module code/data verified (§3.2.1). SGX Security
Can only address module memory (§4.2). NaCl Security
Ryoan intercepts syscalls (§4.2,§4.3.1). NaCl Security
Cannot modify SGX state (§4.3.2). NaCl Security
User defines topology (§4.3.2). Ryoan Security
Data flow tracked by labels (§4.3.3). Ryoan Security
Memory cleaned between requests (§4.3.1). Ryoan Security
Module defines initialized state (§4.3.4). Ryoan Performance
Unconfined initialization (§4.3.2). Ryoan Compatibility
In-memory POSIX API (§4.3.5). Ryoan Compatibility

Table 4.1: Properties Ryoan imposes on untrusted modules, the technology
that enforces them, and the reason Ryoan imposes them.

input size). Table 4.1 summarizes the properties Ryoan imposes on modules

to achieve secure decoupling of observable behavior from secret input data.

Figure 4.4 shows an example of Ryoan processing input from user Alice

whose sensitive data is processed by both 23andMe and Amazon. Each sand-

box instance executes in an enclave on the same or different machines. The

host machine(s) might be provided by 23andMe, Amazon, or a third party. In

all cases, Ryoan assures no leakage of the user’s secrets and prevents leakage

of any trade secrets used by 23andMe and Amazon.

4.3.1 Restricted I/O model

In most cases, Ryoan disallows access to or replaces system services

to eliminate module-controlled externally visible behaviors. However, Ryoan

cannot replace I/O, so it must be allowed in some form (since Ryoan does not

37

control devices directly). Instead of replacing it, Ryoan enforces a restricted

I/O model upon modules. The I/O model ensures that data flow is always

independent of the input data; Ryoan never moves data in response to requests

of the untrusted module once the module has read its input data. This safety

property is sometimes called data obliviousness [OSF+16].

Ryoan requires modules to be request oriented: input can be any size,

but each input is an application-defined “unit of work.” For example, a unit of

work can be an email when classifying spam or a complete file when scanning

for viruses. Each module gets a single opportunity to process a single unit of

work. After generating output, the module must be destroyed (or reset, see

§ 4.3.4) to prevent it from sending the secrets of one user to another, or using

the processing time of future requests to leak information about past requests

(see § 4.3.1 for a full discussion).

Units of work can be any size, but Ryoan ensures that data flow pat-

terns do not leak secrets from input data by making module output size a fixed,

application-defined function of the input size. Ryoan protects communication

with the following rules: (1) Each sandbox instance reads its entire input from

every input-connected sandbox instance before the module starts processing.

(2) The size of the output is a fixed function of the input size, specified as

part of the DAG. Sandbox instances pad or truncate all outputs to the exact

length determined by the function. (3) Each sandbox instance is notified by its

module when its output is complete, and it writes the module’s output to all

output-connected sandbox instances. Sandbox instances encapsulate module

38

23andMe23andMe AmazonAmazon 23andMe23andMe

Sandbox InstanceSandbox Instance

Parse InputParse Input

Sandbox InstanceSandbox Instance

Return Return
ResultsResults

Sandbox InstanceSandbox Instance

ClassifierClassifierFrom UserFrom User To UserTo User

Notation: Notation: Data PaddingPadding PlatformPlatform ModuleModule

Figure 4.3: Ryoan’s distributed sandbox. Modules contributed by principals–
in this case, the platform providers, 23andMe and Amazon–are confined to
process users’ data safely.

output in a message that contains metadata that describes what part of the

message is module output and what part is padding (if any). Receiving sand-

box instances interpret metadata and remove any padding before exposing the

data to its module. These rules are sufficient because they ensure that output

traffic is independent of input data (though there are possible alternatives, for

example, each request could specify its output size).

Consider the scenario in Figure 4.3. Each input comes from a user.

The user can choose to leak the input size or hide it by padding the input.

The description of the application specifies that (1) Ryoan pads the output

of 23andMe’s first module to a fixed size defined by 23andMe which can hold

the largest possible user input, (2) the output of Amazon Machine Learning’s

classifier module is padded to a fixed size to encode the classification result, and

(3) Ryoan also pads the response to the user from 23andMe’s second module,

this time to a fixed size that can hold the largest possible result. Each sandbox

instance must receive the complete input of a work unit before executing its

module.

39

Ryoan ensures that output size is a fixed function of the input, so it is

a module’s mistake if it is not large enough. Ryoan will truncate outputs that

are too large and pad outputs that are too small. However, a module author

should be able to describe the maximum possible output for a given input-

request size. For example, a spam detector’s output will be the input mail

message plus a constant size sufficient to hold the spam rating for the email.

For many tasks, it is easy to bound the size of the output based on the input.

For example, it is straightforward to bound the size of a machine learning

model with a known topology for a known task with known training data, or

to bound the size of a translation from one human language to another.

Processing-time channels. While Ryoan carefully controls I/O, the mod-

ule controls the amount of time it takes to carry out its computation. A module

could use this fact to construct a timing channel by varying the length of time

it takes to generate an output based on secrets in the input data. Ryoan takes

the following steps to limit leaks through processing time channels:

� One shot at input data. Ryoan allows each module to process its input

data exactly once, with no opportunity to carry forward state from one input to

the next. This one-shot policy limits data leakage. Ryoan enforces the one-shot

policy by (1) requiring that the data processing topology be a DAG to avoid

cycles; (2) disallowing access to any state modified by processing a different

unit of work; (3) preventing input replay attacks by re-initializing all secure

connections if any connection is ever broken. Secure communication protocols

40

contain protection against replay attacks [YL08], so the re-initializing of broken

links prevents input replay. Note that the OS can pause or stop the execution of

an SGX enclave, but it cannot roll back its state [Int14], which means the cloud

provider cannot roll back the state of a secure connection. Ryoan itself uses

high-quality randomness available via the processor’s RDRAND instruction to

establish secure connections, which does not rely on the OS.

� Randomness. Users can specify whether confined modules need ac-

cess to randomness. If the user allows, a module can access randomness via the

processor, e.g., Intel’s RDRAND instruction. Ryoan does not allow confined

modules to get randomness from the operating system. Access to randomness

means a malicious module can leak random bits from an input, for example,

by choosing an input bit at random and leaking it using its processing time. If

the user repeats input data, a malicious module with access to randomness can

eventually leak the entire input over its processing-time channel, even though

it only leaks once for each input unit of work. Using a fixed processing time

eliminates this channel.

Some natural types of input data can function as a source of randomness. If

a computation’s input contains ever-changing metadata (e.g., an embedded

timestamp of the request), then a confined module can use these changing bits

to seed a pseudo-random number generator and leak multiple bits from the

semantically identical input. Just like users must take care to prevent leaking

the size of their input data, they must also take care to avoid semantically

identical inputs encoded into different bit representations.

41

Below are other design choices that would provide stronger leak miti-

gation. They are not part of the prototype.

� Fixed processing time. Timing channels can be eliminated by forc-

ing a fixed processing time whose length is determined before the module has

seen any data. The OS cannot directly determine when the module completes,

and thus the Ryoan runtime can pad execution time by busy waiting. How-

ever, controlling its timing without the cooperation of the operating system

is a challenge. Fixed processing time can be quite expensive for computa-

tions with widely variable run times because all run times would be padded

to the worst case. However, fixed processing time can be quite modest for

computations with highly predictable run times (e.g., evaluating certain ma-

chine learning models like decision trees) or light throughput requirements.

Fixed-time execution does not leak information, though we defer to future

work building a sandbox instance that supports it. Execution time could also

be a fixed-function of input length, to add flexibility with no loss of security.

� Quantized processing time. Reducing the granularity of potential

processing times helps to mitigate processing time channels. Systems do

this by padding execution to a fixed number of quantized, pre-defined val-

ues [TLW+09, ZAM11, AZM10, ZAM12]. Because Ryoan only allows mod-

ules to see sensitive data once, enforcing quantized execution would limit the

amount of data individual modules can leak to the logarithm of the number

allowed execution durations. For instance, if the code terminates after one of

eight different statically determined intervals, it leaks three bits.

42

4.3.2 Secure initialization

Ryoan’s secure initialization ensures that modules are loaded correctly

by genuine sandbox instances in the specified topology for a particular applica-

tion. A Ryoan application is described by a DAG specification, which specifies

how modules should be connected (always a DAG for safety, see § 4.3.1). The

user either defines the DAG specification or explicitly approves it.

Initializing the application. A bootstrap enclave (which we will call the

master) receives the DAG specification to start initialization. Upon receiving

the DAG specification, the master requests that the platform instantiate en-

claves that contain sandbox instances for modules listed in the specification.

Different machines or even different providers can host these enclaves. The

master uses attestation to verify each sandbox instance’s validity, then informs

the sandbox instances of the location of their neighbors in the DAG specifica-

tion. Sandbox instances establish cryptographically protected communication

channels via key exchange with their neighbors using the appropriate untrusted

communication medium (e.g., the network or local inter-process communica-

tion) as transport.

The user can verify the master’s validity via attestation and ask whether

the provider has initialized the desired topology. If this is true, the user estab-

lishes secure channels with the entry and exit sandbox instances of the DAG,

and data processing begins.

The master is convenient but not essential to our design. The only

43

requirement is that the user receives some statement, attested to by hardware,

that the cloud provider did not misbehave. For instance, instead, the sandbox

instances themselves could act as a kind of decentralized master and forward

attestations of their neighbors to the user.

Ryoan identity and module identity. SGX attests to the sandbox in-

stances using processor hardware, and the sandbox instances, in turn, attest

to the modules’ initial state using software cryptography (Figure 4.2). SGX

supports two forms of identity, one based on a hash of the enclave’s initial

state (MRENCLAVE) and one based on a public key, product identifier, and

security version number (MRSIGNER). SGX can verify Ryoan using either

form of identity; our prototype uses MRENCLAVE. Ryoan can support soft-

ware analogs of either identity for untrusted modules; the prototype identifies

modules by the public key that signs them.

Module initialization. A sandbox instance begins by verifying that its

module matches the DAG specification. Upon successful verification, the sand-

box instance continues by loading and validating its module. Successfully val-

idated modules are allowed to initialize. While initializing, the module is not

confined and has full access to the system services exposed by vanilla NaCl.

Non-confined initialization makes module creation more efficient, and it makes

porting easier because the initialization code can remain unchanged. Mod-

ules signal Ryoan when initialization is complete by calling wait_for_work,

44

a routine implemented by Ryoan. Once a module is initialized, it processes

a request, generates its output, and then is destroyed or reset to prevent the

accumulation of secret data.

Ryoan module validation ensures that modules are safe to execute by

enforcing a set of constraints on the loaded code. Ryoan uses NaCl’s load-

time code validator to ensure that the module’s code adheres to a strict for-

mat. NaCl’s code format is designed to be efficiently verified and efficiently

sandboxed, restricting control flow targets and cleanly separating code from

data. Memory accesses are confined to remain within the address space oc-

cupied by the module, including execution fetches. The detailed guarantees

of NaCl are available as prior work [YSD+09, SMB+10], and Ryoan does not

change the base guarantees of the NaCl sandbox. Ryoan adds the constraints

that modules may not contain any SGX instructions, and that control flow

is constrained to the initial module code, i.e., Ryoan disallows dynamic code

generation.

Sandbox instance migration. To balance server utilization, Ryoan might

periodically reconfigure the deployment of the data processing DAG. Because

Ryoan processes secret data once, it does not maintain or migrate any per-

sistent state. However, modules might maintain persistent data, for example,

databases for initialization. Ryoan makes no guarantees about a module’s per-

sistent state; module providers should consider their trust relationship with the

platform provider before depending on the fidelity of any state stored by the

45

platform. If a module stores persistent data, then the service provider is ex-

pected to make that data available to the module when it is re-initialized after

migration, e.g., storing it in a distributed data store accessible on the new

node.

The Ryoan prototype only supports the most coarse-grained migration

achieved by shutting down the processing DAG and recreating it on a new set

of nodes. Should migration become a frequent operation, the maser enclave

could coordinate migration as an optimization, e.g., it could migrate only

certain nodes in the DAG.

4.3.3 Protecting module provider secrets

Ryoan uses security labels to prevent module provider secrets from

flowing back to the user. Conceptually, a label is a set of tags, where each tag

is an opaque identifier drawn from a vast universe that identifies a principal,

indicating secrets from this principal. Ryoan uses public keys as tags. Ryoan

assigns the user’s tag to any data provided by the user. Module binaries are

signed; a loaded module’s tag is the public key, which correctly verifies the

signature on its binary. A module provider could use different key pairs to

sign its module binaries, enabling privilege separation.

Ryoan adapts previous label-based systems to enable multiple mutu-

ally distrustful modules to process sensitive data cooperatively. Ryoan la-

bels are similar to labels in DIFC systems [ML97, VEK+07, PBR+14, ZB-

wKM06, KYB+07, LGV+09, PBR+14], but are far simpler. Ryoan labels are

46

only used to reason about data secrecy (not integrity), and are coarse-grained;

Ryoan applies labels to entire modules and the data they generate. Ryoan’s

use of labels could also be thought of as taint tracking [CPG+04] at enclave-

level granularity, with per-principal taint classes. Taint is attached to data at

the unit of work granularity (where the units of work are application-defined).

Label manipulation rules. Each module is created with an empty label,

and can add or remove a single tag that corresponds to its principal — each

module can declassify its own secrets. When a module reads data with a

non-empty label (e.g., from a user or another module’s output), the module’s

label is replaced with the union of the data’s label and the module’s old label.

Ryoan marks a module’s output data with the module’s label.

In Figure 4.4, Alice’s input is labeled with their tag, and the first

23andMe module adds the 23andMe tag, to make sure that its secrets cannot

flow back to the user after handing them off to Amazon’s machine learning

module. This control is essential since the user is in control of the topology.

The second 23andMe module removes its tag from its output’s data label.

In a sense, 23andMe’s public key creates a group, and both modules

are members of the group—verified by Ryoan because 23andMe signed both

modules with that key. Ryoan is trusted to remove the user’s tag when it

communicates over a protected and authenticated connection to the user.

47

Non-confining labels. If a module’s label does not contain tags from other

principals, the module is not confined. Such labels are called non-confining

labels. A module with a non-confining label may perform any file system

operation, network communication, or address space modification permitted

by Ryoan and NaCl. For example, it can freely initialize its state by reading

from the network or file system. Ryoan allows unfettered access to external

resources because the principal’s tag means that the module may have seen

secrets only from itself. In Ryoan’s threat model, each principal trusts their

module not to leak their secrets (§4.1) and to validate any data it receives from

an untrustworthy source.

In many DIFC systems, principals are independent of the application

code, e.g., multiple users (principals) use the same wiki Web application, and

the users do not trust the application [VEK+07,PBR+14,ZBwKM06,KYB+07,

LGV+09]. Ryoan allows application owners (module providers) to be princi-

pals who trust their own code, which is different from the standard DIFC

model. Although a module provider’s code may have bugs that cause it to

release its own secrets in its output, that is not within the threat model for

Ryoan and can be mitigated using orthogonal techniques (§4.1). Ryoan pro-

tects a principal’s data when it is processed by modules that are not under the

principal’s control.

A module provider can host its modules and secret data on its machines

to protect them. However, if it chooses to use a third-party computational

platform that it does not trust, its modules containing non-confining labels

48

Sandbox InstanceSandbox Instance

Amazon ML23andMe

1. Input from
user Alice

7. Output to
user Alice

2. Label added by
sandbox:

3. 23andMe adds
its label and
delegates to
Amazon Machine
Learning

4. Amazon ML
sends result to
23andMe after
removing its own
label

6. Sandbox removes
Alice's label

5. 23andMe removes
its label

Sandbox Instance

23andMe

Alice
23andMe
Amazon

Alice
23andMe

Alice
23andMe

Alice
23andMe

Alice
23andMe

Alice

Figure 4.4: Sandbox instances manage labels on data and modules. The user’s
tag is propagated to all modules, making them confined after receiving input;
for example, Ryoan keeps 23andMe’s tag when it outsources to Amazon Ma-
chine Learning to prevent leaking 23andMe’s secrets.

need encryption to protect persistent secrets from the platform. Ryoan uses the

SGX sealing feature to store secret data on behalf of modules. Sealing provides

an encryption key only accessible to enclaves with the same identity executing

on the same processor. For Ryoan, all enclaves contain sandbox instances and

have the same identity. The module passes any data that it wants to persist

securely to Ryoan, which adds metadata, including the module’s public key.

Ryoan seals the data and metadata and writes the result into a file. The

metadata allows Ryoan to persist data on behalf of different modules and

allows it to restrict any module’s access to its data.

Confining labels. When a module’s label contains tags of other principals

(as a result of receiving secrets from a user or another module’s output), Ryoan

confines it. We call such labels confining labels. A confining label indicates

the module may have seen the secrets of other principals; Ryoan must prevent

the module from leaking those secrets.

Ryoan prevents modules with confining labels from persisting data.

49

As a result, Ryoan’s label system is far simpler than DIFC systems [VEK+07,

ZBwKM06,PBR+14,KYB+07,ML97]. Confined modules have seen secret data

from other principals, so allowing them persistent storage violates Ryoan’s

“one-shot” request-oriented data model—a module processes a request once

and only once.

4.3.4 Optimizing module reset

The restrictions necessary to confine modules create execution time and

memory space overheads. In this section, we discuss strategies for mitigating

these overheads.

Checkpoint-based enclave reset. Creating and initializing modules often

requires far more CPU time than processing a single request (see Section 5.6

for measurements). For instance, loading the data necessary for virus scanning

takes 24 seconds, orders of magnitude greater than the ≈0.124 seconds it takes

to process a single email. Ryoan manages the module lifecycle efficiently using

a checkpoint-based enclave reset.

Creating and initializing a hardware protected enclave is slow (e.g.,

we measured 30 ms for a small enclave). Compounding the problem is that

applications often do not optimize their initialization sequence because they

assume that it will not be executed frequently. However, Ryoan does not allow

any data from one input unit of work to be carried forward to the next. Each

input requires that the computation begins from the same, non-secret state,

50

making initialization a bottleneck.

Ryoan provides a checkpoint service that rolls back the application to

an untainted, but initialized, memory state (Figure 4.5). In our prototype, this

state is at the first invocation of wait_for_work. Ryoan does not allow an

enclave that has seen secret input to be checkpointed, because its data model

is request-oriented: modules cannot depend on data from past requests to

operate. Checkpointing a module that has seen secret data would (potentially)

give that module multiple execution opportunities on a single request’s unit of

work.

Checkpoint restore allows Ryoan to save the cost of tearing down and

rebuilding the SGX enclave, and it saves the cost of executing the application’s

initialization code. Ryoan takes checkpoints once but restores the checkpoint

after each request is processed. Therefore, Ryoan makes a full copy of the

module’s writeable state and simply tracks which pages get modified (avoiding

a memory copy during processing); Ryoan only needs restore the contents of

modified pages (§4.4.6). SGX provides a way for enclave code to verify page

permissions and be reliably notifies the enclave about memory faults, which is

necessary to track modified pages.

Batch requests before a reset. A user might want more efficiency by

allowing a module to process several input units of work before reset. Whether

batching multiple inputs within a single request constitutes a threat is user

and application dependent. However, if a module can process more than one

51

create init wait process output destroy

create init wait process output resetcheckpoint

unoptimized life cycle

checkpoint-based life cycle

Figure 4.5: Sandbox instance lifecycle: unoptimized vs. checkpoint-based.

unit of work from the same data source, it can accumulate secrets across

multiple wait-process-output cycles. Access to more secret data for longer

periods exacerbates the problem of slow leaks (e.g., timing channel leaks). For

example, an email-filtering module allowed to process multiple emails without

resetting could leak multiple bits of a password contained in one email by using

the processing-time channel across multiple wait-process-output cycles.

4.3.5 Ryoan’s confined environment

Any module with a confining label executes in Ryoan’s confined envi-

ronment. Ryoan’s confined environment is intended to prevent information

leakage while reducing porting effort. In order to allow code developed for

general-purpose computing environments to be used within Ryoan, the trusted

Ryoan runtime can provide backward compatibility services. When a module

receives the secret data contained within a request, it enters the confined en-

vironment and loses the ability to communicate with the untrusted OS via

any system call. Therefore, Ryoan provides a system API sufficient for most

legacy programs to perform their function without modification. Ryoan pro-

52

vides these services:

� The most important service is an in-memory virtual file system.

First, Ryoan allows users to preload files into module memory. The list of

preloaded files must be determined before the module is confined, e.g., they

can be listed in the DAG specification, or requested by the module during

initialization. Ryoan presents POSIX-compatible APIs to access preloaded

files that are available even after the module is confined. Second, a confined

module can create temporary files and directories (Ryoan keeps them in en-

clave memory). When the module is destroyed or reset, Ryoan destroys all

temporary files and directories and reverts all changes to preloaded files.

� mmap calls are essential to satisfy dynamic memory allocation, so

Ryoan supports anonymous memory mappings by returning addresses from a

pre-allocated memory region. The module must decide the maximum size of

that region before it becomes confined.

Ryoan’s confined environment is sufficient for many data-processing

tasks. For example, ClamAV–a popular virus scanning tool–loads the entire

virus database during initialization; when scanning the input such as a PDF

file, it creates temporary files to store objects extracted from the PDF. Ryoan’s

in-memory file system satisfies these requirements.

However, if an application needs a large database that does not fit in

memory when processing data, Ryoan cannot support it as a single module.

A workaround would be to partition the database and use multiple modules

53

to load different partitions and perform different parts of the task if that is

feasible for a particular application.

Any design alternative that allows access to persistent files (as opposed

to Ryoan’s in-memory files) must cope with the covert channel created by

allowing the OS to see file reads, which might occur based on the computation

within the untrusted module. Ryoan eliminates this channel by executing

from memory only. All Ryoan modules must fit into memory for their entire

execution because any “swapping” done by Ryoan will create a covert channel

between the module and the operating system. File access techniques based

on oblivious RAM (ORAM [RFK+15,LHH+15]) can hide data access patterns,

but at a performance and resource cost that we deem too high.

4.3.6 Protecting Ryoan from privileged software

A sandbox instance requires services provided by the untrusted oper-

ating system and possibly the hypervisor. The sandbox instance must check

the results coming from the untrusted operating system to make sure it is not

misbehaving. We inserted most of these checks into libc, which communicates

with the operating system. Ryoan-libc is Ryoan’s replacement for libc, and

it manages system call arguments and checks their return values. The Ryoan

sandbox code invokes Ryoan-libc through standard libc functions, such as

the wrappers for system calls (e.g., read). SCONE [ATG+16] and Graphene-

SGX [TPV17], also modify libc.

54

Iago attacks. Ryoan-libc guards against all known Iago attacks [CS13] by

keeping state in enclave memory and carefully checking the results of system

calls, e.g., making sure that addresses returned from mmap do not overlap

with previously allocated memory (like the stack). For Linux, the system

call interface can be secured, e.g., by maintaining semaphore counts in enclave

memory and duplicating futex [FRK02] memory inside and outside the enclave.

Ryoan shares the need for this checking with all systems distrustful of the

operating system [HKD+13,KDL+16,CGL+08], though some check at a lower

level than system calls [BPH15].

Controlling an enclave’s address space. SGX provides user control of

memory mapping, including permissions. Ryoan-libc maintains a data struc-

ture equivalent to the kernel’s list of virtual memory areas (VMAs). It knows

about each mapped region and its permissions. Map requests are fulfilled ea-

gerly and verified by Ryoan-libc at the time of the request (i.e., part of the

mmap call), not at page fault time.

SGX dictates a very specific procedure for verifying enclave mappings.

A typical new mapping proceeds as follows: (1) untrusted code notifies the ker-

nel of a new desired mapping via a system call made by Ryoan-libc; (2) the OS

selects new enclave page frames to satisfy the mapping and modifies the page

tables to map the frames at the requested virtual address with the requested

permissions; (3) untrusted user code resumes and passes control to enclave

code; (4) enclave code verifies that the mapping completed as expected by

55

invoking the SGX instruction EACCEPT on every new page. The EACCEPT in-

struction accepts a virtual address and protection bits and verifies that the

current address space maps that page to a valid, SGX protected 4KB physi-

cal frame. New pages added to the enclave always start with read and write

permissions, and hardware zeros their contents.

If the user wants something other than read and write permission, SGX

provides the EMODPE instruction to make them more permissive and the EMODPR

instruction, which makes them less permissive. EMODPE is only available to en-

clave code while EMODPR is only available to privileged software (ring 0, outside

of the enclave). If an enclave desires less permissive page access rights, it must

signal privileged software to request the restriction. However, it can validate

that it was done correctly through another use of the EACCEPT instruction.

Ryoan-libc emulates mmap behavior by doing work required by SGX

on behalf of the user. For instance, if the user expects new pages to have

particular contents (e.g., the user privately mapped a file) and to be read-only,

Ryoan-libc copies the file into enclave memory and ensures those pages have

read-only permissions before returning.

Rollback. Privileged software can rollback any persistent state. Ryoan does

not depend on any persistent state, preventing rollback attacks by design.

Ryoan also provides mechanisms that allow module providers to avoid depen-

dence on any persistent state. Ryoan’s initialization depends only on its initial

in-memory state, which is protected and attested by hardware. All other state

56

is derived from hardware randomness or provided securely at runtime by the

sandbox provider.

A module might use persistent state, for example, during initialization

before seeing any user-supplied secrets. In Figure 4.3, Amazon’s machine learn-

ing classifier might load pre-computed parameters stored in a Ryoan-managed

per-application directory in the local file system. Module providers should

employ encryption, hashing, and rollback protection appropriate to their trust

relationship with the platform provider (and with any provider of information).

Persistent state protection for modules is the module provider’s re-

sponsibility, just as module functionality/correctness is the module provider’s

responsibility. Ryoan guarantees that once a module sees user data, it cannot

leak that data; it does not guarantee that modules act according to specifica-

tions, e.g., that a module correctly identifies spam.

Enclave indistinguishability. While SGX enables enclaves to attest their

integrity to outside parties, nothing prevents the platform from instantiating

multiple copies of enclaves. Ryoan prevents the platform from exploiting this

fact by establishing secure channels between different enclaves and between

enclaves and the user with never-persisted keys, requiring the user or other

enclaves to renegotiate a key with each new enclave (tipping them off to the

switch).

57

4.4 Implementation

The sandbox instance prototype is based on NaCl version 2d5bba1 with

the last upstream commit on Jan 19, 2016. We leverage NaCl’s existing sand-

boxing guarantees to control the module’s access to the platform. NaCl ensures

that the module in the sandbox has no direct access to OS services. We ported

NaCl for use in SGX with the introduction of the Ryoan-libc layer. NaCl de-

pends on libc to interface with the platform. Ryoan-libc makes system calls

on behalf of a sandbox instance after checking that the system call is allowed.

We modified eglibc’s dynamic linker to support loading Ryoan into enclaves,

but all modules must be statically linked. We base Ryoan-libc on eglibc 2.19,

which is compatible with our version of NaCl.

4.4.1 Constraints of current hardware

Ryoan relies on features from Version 2 of the SGX hardware, while

only Version 1 is currently available. Version 2 adds the ability to modify

enclaves dynamically, i.e., augmenting an executing enclave with new memory

and changing protections on existing enclave memory. Ryoan relies on chang-

ing memory protections to implement efficient checkpoint recovery. Further-

more, our first-generation SGX-capable machine makes only a limited amount

of physical memory available to SGX (128MB on our machine).

58

4.4.2 Ryoan-libc

Ryoan-libc manages interactions with the untrusted operating system.

The OS cannot read enclave memory, so Ryoan-libc marshals system call ar-

guments into the process’ untrusted memory and copies back results. Interpo-

sition from libc is common for applications that do not trust the operating

system [CGL+08, HKD+13, KDL+16], while Haven protects a smaller system

interface [BPH15].

Fault handling. Signals allow user-level code to be interrupted by the sys-

tem. The sources of most signals are unreliable when the OS is untrusted, but

SGX allows us to get reliable information about memory faults; this allows

Ryoan-libc to expose this information to sandbox instances through the nor-

mal signal handler registration interface. Ryoan-libc signal support is currently

limited to the memory fault signal (SIGSEGV).

After any fault, exception, or interrupt the OS returns control to un-

trusted trampoline code contained within the process. For memory faults,

rather than simply resuming the enclave where it was paused (as in the nor-

mal case), our trampoline code enters the enclave. Inside the enclave, it can

read reliable information about the fault from SGX and make necessary ar-

rangements to fix it (e.g., change permissions). After handling the fault, the

enclave exits, and then our trampoline resumes the enclave at the instruction

that caused the memory fault. We cannot protect the trampoline code from

the OS. However, it can only enter the enclave using the EENTER instruc-

59

tion, which will transfer control to our fault-checking entry point, or resume

the enclave using the ERESUME instruction, re-executing the instruction that

faulted. If the OS tries to resume the enclave without calling the enclave fault

handler, the instruction will simply re-fault.

4.4.3 Module address space

x86-64 NaCl allocates an 84 GB region for a NaCl module with 4 GB of

module address space flanked above and below by 40 GB of inaccessible guard

pages. However, current SGX hardware only allows enclaves with 64 GB of

virtual address space. Fortunately, the original x86-64 NaCl design [SMB+10]

overestimated the number of guard pages needed to allow for future changes

in the architecture. A detailed analysis [nac] indicates we can remain safe

by keeping the upper guard region unchanged but reducing the lower region

from 40 GB to 4 GB. Therefore, a sandbox instance requires 48 GB of virtual

address space, which fits into current SGX hardware.

4.4.4 I/O control

A sandbox instance controls its module’s access to files and request

buffers when it is confined, preventing the module from leaking data via direct

syscalls.

In-memory virtual file system. A confined module cannot access the file

system, but Ryoan implements POSIX-compatible APIs for in-memory virtual

60

files, including preloaded files and temporary files. Ryoan backs in-memory

files with a set of 4 KB blocks indexed by a two-level tree structure (similar

to a page table). Ryoan allocates the blocks of a file on-demand as the file

grows. The maximum size of an in-memory file is 1 GB. Ryoan backs in-

memory directories with a hash table, and we use reference counts to track

the lifetime of files. This virtual file system supports standard APIs, including

open, close, read, write, stat, lseek, unlink, mkdir, rmdir, and getdents.

When the module writes a preloaded file, the sandbox instance keeps the

original file blocks. When the module resets, Ryoan restores preloaded files to

their original versions and deletes temporary files.

Input/output buffers. For each unit of work, a module calls wait_for_work

(a system service implemented by Ryoan). The sandbox instance reads its en-

tire input from all input channels into memory buffers before returning to the

module. After processing the work unit, the module writes its output to a

buffer, the sandbox instance flushes the buffer to output channels on the next

wait_for_work call. Before writing out the data the sandbox instance pads

or truncates the output to a size calculated using a fixed function of input size

according to the DAG specification. The module accesses these buffers via file

descriptors using APIs implemented in the virtual file system, just like using

regular pipes or sockets.

61

4.4.5 Key establishment between enclaves

Sandbox instances implement protected channels using an authenti-

cated encryption algorithm (AES-GCM [MV05]) provided by the libsodium [lib]

library. Encryption keys are agreed on at runtime using a Diffie-Hellman key

exchange. SGX allows enclave code to embed the key parameters in attesta-

tions, accelerating a Diffie-Hellman key exchange between enclaves [sgx15]. On

our hardware (§5.6), SGX key exchange takes 1.78ms, while OpenSSL takes

1.90ms. Randomness is required for key exchange, and Ryoan uses the x86

instruction RDRAND to obtain it.

4.4.6 Checkpointing confined code

Ryoan uses page permission restriction and fault information to detect

module writes. Recall that SGX provides reliable memory page permissions

and information about memory faults; Ryoan does not trust the OS (§4.4.2).

The entire module is write-protected by the OS when it is confined. Ryoan

verifies that the protection was done using EACCEPT . As the module writes, the

sandbox instance catches permission faults and records the offending page’s ad-

dress before changing the permissions to allow writes and resumes the module.

However, updating the permissions in the page table requires ring-0 privilege.

The sandbox instance’s signal handler first executes outside the enclave and

makes an mprotect system call to change the page permissions, to avoid an

extra enclave exit. Once that process is complete, it enters enclave mode to

update SGX page permissions with EMODPE (and performs the bookkeeping

62

mentioned above). With that done, the handler returns and normal execution

resumes.

All written pages are restored to their initial value and made unwritable

again to reset the enclave. In our prototype, before Ryoan confines an un-

trusted module for the first time, the sandbox instance creates a checkpoint by

copying the module’s complete writable memory state. This copy-on-initialize

strategy optimizes the case where sandbox instances are created once and then

used and reset for many requests. If the copy-on-initialize cost is too high,

Ryoan could incrementally create the checkpoint by doing a copy-on-write for

each request, gradually accumulating and preserving unmodified versions of

any page modified during any execution.

In our prototype, the Ryoan checkpoints when the module blocks on

wait_for_work and restores the next time the module blocks on wait_for_work.

This gives module writers clear semantics about what state will not persist

across invocations and allows the sandbox instance to purge any secrets kept

in registers.

Restoring a checkpoint does incur additional page faults, which could

be used as a channel to leak data. We find these additional faults acceptable

as even normal page accesses by the module are a channel between module and

OS that SGX does not close [XCP15]. Page faults will continue to leak infor-

mation about enclave execution until future generations of hardware enclaves

can service their page faults (§3.2.2), or SGX provides another hardware fix.

To make Ryoan execution on current SGX hardware more secure, we could

63

save/restore all writable regions of the module instead of tracking individual

pages using write protection. This strategy is less efficient but does not leak

additional per-page information.

4.5 Use cases

This section explains four scenarios where Ryoan provides a previously

unattainable level of security for processing sensitive data. For all examples,

the sandbox instances could execute on the same platform or different plat-

forms, e.g., the entire computation might execute on a third-party cloud plat-

form like Google Compute Engine, or a provider’s module might execute on

its own server. Ryoan’s security guarantees apply to all scenarios.

4.5.1 Email processing

A company can use Ryoan to outsource email filtering and scanning

while keeping email text secret. We consider spam filtering and virus scanning,

using popular legacy applications — DSPAM 3.10.2 and ClamAV 0.98.7.

The computation DAG for this service contains four sandbox instances,

each confining a data processing module (see Figure 4.6). An email arrives at

the entry enclave over a secure channel, which distributes the email text and

attachments to the enclaves containing DSPAM and ClamAV, respectively.

The virus scanning and spam filtering modules forward their results to a final

post-processing enclave, which constructs a response to the user over a secure

channel.

64

Email

Virus
Scan

Spam
Filter

CombineDistribute

Health

Recognize
Face

Recognize
Smile

Recognize
Horse

Recognize
NSFW

Combine Results

Images

Distribute

Translate

Translation

Classifier

23andMe

Parse Input Return Results

Confined, Untrusted Module - Entry - ExitNotation:

23andMe
Amazon

Machine Learning

Figure 4.6: Topologies of Ryoan example applications. Nodes in the graph
are sandbox instances, though we identify them by their untrusted module.
Users establish secure channels with trusted Ryoan code for the source and
sink nodes to provide input and get output, respectively.

4.5.2 Personal health analysis

Consider a company (e.g., 23andMe) that provides customized health

reports for users based various health data. 23andMe accepts a user’s genetic

data, medical history, and physical activity log as input; extracts important

health features from these data; and predicts the likelihood of certain dis-

eases [23aa]. Since genetic and health information is extremely sensitive, users

may not feel comfortable with the company keeping their data. To encourage

the use of the service, 23andMe can deploy it with Ryoan, assuring users that

the code that processes their data cannot retain or leak their secrets.

23andMe owns its research results about the associations between dis-

eases and health features. However, it may want to use a third-party machine-

learning service in the cloud (e.g., Amazon Machine Learning [aml]) to train

its model and generate predictions. 23andMe’s trade secret is how to map

65

a user’s complex, multi-modal health data onto machine learning features.

Amazon Machine Learning provides a way to train models based on unlabeled

features and software (a classifier) which queries that model. After training a

model this way, 23andMe wants to keep the input to the classifier a secret from

parties who have the means to map the inputs back to secret health data: users

of their service. Ryoan enables 23andMe to outsource machine learning tasks

to Amazon while protecting its proprietary transformation from user data to

health features.

Ryoan protects secrecy for both users and 23andMe with the DAG

shown in Figures 4.4 and 4.6. 23andMe compiles a training data set which

it transmits to Amazon to construct a model. Amazon provides the classifier

which queries that model as a Ryoan module. Users provide their genetic

information, medical history, and activity log in a request. Upon receiving a

user’s request, 23andMe’s first module constructs a boolean vector of health

features and forwards it to Amazon’s module. Amazon’s module generates

predictions based on the model and forwards the result to 23andMe’s second

enclave, which then forwards the result to the user.

The user’s label is kept throughout the entire pipeline so that all the

enclaves are confined when receiving the user’s input and cannot leak informa-

tion about the input. Further, 23andMe keeps its label with the request sent

to Amazon so that Amazon cannot leak data about 23andMe’s health features

to other parties (particularly the user) since they cannot remove 23andMe’s

label in order to release data out of Ryoan’s confinement. Amazon’s module

66

passes the results of the classification to another module owned by 23andMe.

23andMe uses this module to verify that its proprietary transformations are

not in the output before removing the 23andMe label and sending the results

to the user.

Real genetic prediction models are proprietary, unknown to us, and out

of scope for this paper; our workload uses general knowledge and best prac-

tices. We train a support vector machine (SVM) and choose 20 well-studied

diseases and their top 500 correlated genes, according to a database provided

by DisGeNet [dis]. We trained the SVM models synthetic data based on that

database. Our prototype uses stochastic gradient descent as the training al-

gorithm [Bot], which allows incremental updates to existing models.

4.5.3 Image processing

Image classification as a service is an emerging area that could benefit

from Ryoan’s security guarantees (e.g., Clarifai [cla] or IBM’s Visual Recogni-

tion service [ibm]). We envision a scenario where a user wants different image

classification services based on their expertise. For example, one service might

be known for accurate identification of adult content [MP] while another might

do an excellent job of recognizing and segmenting horses. The image process-

ing DAG in Figure 4.6 shows an example where an image filtering service

outsources different subtasks to different providers and then combines them.

The user’s label is propagated to all processing enclaves, causing Ryoan to

confine their execution. Our prototype implements all of these detection tasks

67

using OpenCV 3.1.0. Each detection task loads a model that is specialized in

the detection task and would represent a company’s competitive advantage.

4.5.4 Translation

A company uses Ryoan to provide a machine translation service while

keeping the uploaded text secret. Users upload text to the translation enclave

and get the translated text back. Our prototype uses Moses [mos], a statis-

tical machine translation system. We train a phrase-based French to English

model using the News Commentary data set released for the 2013 workshop

in machine translation [wmt].

4.6 Evaluation

We quantify the time and space costs of Ryoan and its components

by measuring the execution of the use cases described in the previous section

using a combination of real hardware and emulation.

We measured all benchmarks on a Dell Inspiron 7359 laptop with an

Intel Core i5-6200U 2.3 GHz processor (with Skylake microarchitecture and

SGX version 1) and 4 GB RAM. We use a laptop because it contains the first

SGX-enabled processor we could purchase; however, we validate our measure-

ments using a more recent Intel E3-1270 (see the analysis for SGX Overhead

below). We use Intel’s SGX Linux Driver [sgxb] and SDK [sgxa] to measure

SGX instructions’ costs.

To test our implementation and overcome our hardware’s limitations,

68

48% 419%

27%
91%

0

10

20

30

40

Email Health Images Translation

W
o

rk
lo

a
d

 R
u

n
ti
m

e
(S

e
c
o

n
d

s
)

Baseline (Native Linux)

Sandbox

Sandbox+Enc

Sandbox+Enc+Marsh

Sandbox+Enc+Marsh+CPR

Ryoan

Cost of Confinement

Figure 4.7: Runtimes of applications with Ryoan overheads enumerated. Each
bar represents the mean of 5 trials annotated with the 95% confidence in-
terval. Ryoan bars show percent slowdown over native. (Enc: encryp-
tion; Marsh: syscall marshaling; CPR: checkpoint restore; Ryoan: Sand-
box+Enc+Marsh+CPR+SGX)

69

Application Input
Email 250 emails, 30% with 103KB-12MB attachment

Health 20,000 1.4KB Boolean vectors from different users
Images 12 images, sizes 17KB-613KB

Translate 30 short paragraphs, sizes 25-300B, 4.1KB total

Table 4.2: Inputs for each Ryoan application.

we built an SGX emulator based on QEMU [qem] (full emulation mode), aug-

mented with SGX version 2 instructions. To emulate the performance of SGX

V2, we insert delays based on our measurements of current SGX hardware,

flush the TLB according to Intel’s SGX specification, and estimate overhead

for V2 instructions based on the performance of V1 instructions. We could

not use OpenSGX [JDK+16], because it lacked 64-bit signals. Our emulator

can run a complete software stack, including an SGX-aware Linux kernel.

4.6.1 Understanding workload performance

Figure 4.7 shows a breakdown of the various sources of overheads for

Ryoan. The baseline is to run applications built for a native Linux environment

and then add sandboxing, encryption, syscall marshaling, checkpoint restore,

and SGX (where SGX overheads are a mix of emulation and measurements,

see the discussion below). Table 4.2 shows the inputs for each of the work-

loads, and detailed measurements for each module in the DAG and counts of

important events (see Section 4.5 for more details about the workloads).

70

Load Inited CPR Init CPU
Size(MB) Size(MB) Size Time(s) Time(s)

E
m

ai
l

Distribute 18.0 18.1 11.6MB 0.59 1.32
DSPAM 19.6 273.5 45.3MB 11.15 22.10
ClamAV 21.1 403.9 83.3MB 24.96 29.17
Combine 18.0 18.1 16KB 0.59 0.11

H
ea

lt
h LoadModel 19.3 19.4 28KB 0.58 12.52

Classifier 19.3 19.4 36KB 0.58 18.23
Return 18.0 18.1 16KB 0.59 6.77

Im
ag

es Distribute 18.0 18.1 632KB 0.59 0.42
Recognize 26.6 27.1 83.2MB 0.63 24.79
Combine 18.0 18.1 2.5MB 0.59 0.36
Translation 25.3 386.9 29.1MB 2.34 26.65

Table 4.3: Breakdown of memory size and compute statistics per module per
workload. Load Size: the size of the loaded module before execution, Inited
Size: module size after initialization. Init Time: module initialization time.
CPU Time: Processing time of enclave (seconds), CPR size: data copied/ze-
roed on checkpoint restore. “Images: Recognize” reports the maximum of all
four image recognition enclaves.

Inputs. We designed workload inputs to be realistic. Email bodies are from

a spam training set [spa]. Email attachments are a set of PDFs randomly

attached to 30% of emails (and that figure is from a study of corporate email

characteristics [ema]). Images are a mix of photographs, computer-generated

patterns, and logos. Gene data was synthesized based on DisGeNet [dis].

Translation text comes from the News Commentary dataset [wmt].

Confinement overhead. In Figure 4.7, the Sandbox and Sandbox+Enc

overheads are necessary for confinement, and across all workloads, encryption

does not add significant overheads. For Genes, the confinement overhead is

71

Event Counts (Thousands)
System Calls Page Faults Interrupts

E
m

ai
l

Distribute 47 60 0.47
DSPAM 1,290 1,810 6.00
ClamAV 247 423 7.00
Combine 120 2 0.08

H
ea

lt
h LoadModel 82 280 56.00

Classifier 1,840 359 151.00
Return 668 162 3.00

Im
ag

es Distribute 2 2 0.04
Recognize 88 174 6.00
Combine 14 3 0.13
Translation 303 248 8

Table 4.4: Enclave exits (System Calls, Page Faults, and Interrupts) per work-
load per module. “Images: Recognize” reports the maximum of all four image
recognition enclaves.

high (100%) because it runs a very simple SVM classifier. The actual data

processing time is small, which amplifies the effect of Ryoan’s data buffering/-

padding and serves as a worst-case scenario. For Images, the workload involves

heavy computation with OpenCV, and the confinement overhead is 18%.

Checkpoint restore overhead. The CPR Size column in Table 4.3 shows

the amount of memory copied/zeroed on checkpoint restore. Figure 4.7 (the

difference between the Sandbox+Enc+Marsh and Sandbox+Enc+Marsh+CPR

columns) shows that checkpoint restore’s impact on performance is significant

(55%) for Genes because it has the lightest per-unit workload (≈1ms) and the

relative cost of page fault handling is high; in contrast, its impact on Images

is only 3%, which has the heaviest per-unit workload (≈2s).

72

SGX overhead. Executing code in an SGX-protected enclave imposes sev-

eral overheads. We simulate SGX hardware overheads by using delays to model

the performance of SGX instructions, and flush the TLB on all enclave exits

(we could not directly measure execution on our hardware because it lacks

SGX version 2 features (§4.4.1)). Besides explicit EEXIT instructions, we also

model enclave exits due to events like exceptions and interrupts (Table 4.4).

We measure a hardware delay of 3.9µs for each EENTER /EEXIT pair, and

3.14µs for each ERESUME /Async-Exit pair.

We also measured SGX instruction costs on the more recent and power-

ful Intel Xeon E3-1270 v6 3.80 GHz processor. On the Xeon processor, EENTER

/EEXIT pairs cost 2.34µs, and ERESUME /Async-Exit pairs cost 1.85µs. This

processor’s clock rate is about 65% faster than the laptop, and the SGX costs

have been reduced by about that factor.

Version 2 instructions EACCEPT , EMODPE , EMODPR are simpler than

EENTER and EEXIT , so we model their cost at one-tenth of one EENTER /EEXIT

pair. Figure 4.8 explores the effect of varying this cost on the runtime of

our workloads. If the version 2 instructions turn out to be as costly as an

EENTER /EEXIT pair (3.9µs), for instance, the running times of our email,

health, images, and translation workloads increase by 25%, 14%, 7%, and 4%

respectively.

Every checkpoint-related page fault requires one EMODPE to extend

page permissions. Every page reverted after checkpoint requires one EMODPE

followed by one EACCEPT . Unfortunately, version 2 of SGX also imposes ad-

73

0

10

20

30

40

50

0 1 2 3 4
SGX version 2 Instruction Latency

(microseconds)

W
o
rk

lo
a
d
 R

u
n
ti
m

e
(s

e
c
o
n
d
s
)

Email

Health

Images

Translation

Ryoan Sensitivity to SGX V2 Instruction Costs

Figure 4.8: Ryoan application workloads’ sensitivity to emulated instruction
cost. The dashed vertical line denotes the delay (0.39µs) used to compute the
Ryoan bars in Figure 4.7.

ditional synchronization (via extended behaviors of ETRACK) when modifying

the enclave’s page state [MAA+16]. We believe the performance effect on these

workloads will be negligible, given that our applications only have one thread

per enclave. SGX execution also requires syscall marshaling to copy system

call arguments and results to and from untrusted memory, but we measure the

marshaling overhead as negligible. All results are shown in Figure 4.7.

Checkpoint restore vs. initialization. Creating an enclave and loading

a module takes less than 0.5s for all our cases. However, Table 4.3 shows

application-level initialization times are over 20 seconds for DSPAM and Cla-

mAV because they need to load and parse databases. As a result, for this

workload, it is preferable to use Ryoan’s checkpoint-based reset rather than

74

0%

10%

20%

30%

40%

1k 2k 4k 8k 16k 32k 64k
Instructions Retired/LLC miss

S
G

X
 S

lo
w

d
o
w

n

SGX read (decryption) slowdown

Figure 4.9: Slowdown observed with respect to LLC read-misses running the
cache-miss microbenchmark inside an SGX enclave versus running the same
code without SGX.

re-initialize the modules for every work unit. Enclave construction imposes fur-

ther overheads on re-initialization. Even the creation of small enclaves (e.g.,

298KB) incur a penalty of 30 milliseconds. In comparison, Ryoan’s checkpoint-

based reset is much more efficient, and the per-unit cost is under 10ms.

4.6.2 SGX encryption overheads

Enclave memory is encrypted whenever it leaves the processor. This

invariant means additional operations are required when the processor reads

memory from RAM: encrypt on write, decrypt on read. These additional

operations add latency to last level cache (LLC) misses. Encryption related

performance penalties are absent from our performance model; here, we explore

their cost.

75

0.0%

0.5%

1.0%

1.5%

1k 2k 4k 8k 16k 32k 64k
Instructions Retired/LLC miss

S
G

X
 S

lo
w

d
o
w

n

SGX write (encryption) slowdown

Figure 4.10: Slowdown observed with respect to LLC write-misses running the
cache-miss microbenchmark inside an SGX enclave versus running the same
code without SGX.

LLC miss microbenchmark. To measure the memory controller overheads

of SGX, we use a microbenchmark that executes a fixed number of instructions

per cache-miss (read or write). We execute the same microbenchmark as part

of a normal process and compare it to execution in an enclave protected by

SGX. The slowdown incurred by running the microbenchmark in an SGX

enclave for a varying number of retired instructions (and for read or write

LLC misses) is shown in Figures 4.9 and 4.10. When computation does not

access memory (and we have a large number of instructions per cache-miss),

the enclave code’s performance is very similar to unshielded execution. The

microbenchmark makes no system calls, and we eliminated page faults by

ensuring all enclave memory is touched before measurement begins. Therefore

the only enclave exits are due to interrupts, and their effect on the total time

is insignificant.

76

Instructions/LLC miss Memory controller
Benchmark Module Read Miss Write Miss SGX slowdown
Email ClamAV 1,260 5,090 32.0%
Health Classifier 14,310 24,650 3.2%
Images Recognize 32,760 9,000 1.4%
Translation (one module) 12,560 34,510 3.5%

Table 4.5: Instructions per LLC miss on Ryoan benchmarks. Memory con-
troller SGX slowdown is the slowdown measured for microbenchmarks of equiv-
alent miss patterns on SGX hardware.

Write-misses are cheap because the processor does not wait for the

memory controller to encrypt data. A last-level write cache-miss every 1,000 in-

structions incurs about 1.4% execution time overhead. Read-misses can cause

significant delays, and programs with high read-miss rates will run slowly

within an enclave. A read-miss every 1,000 instructions causes a 38.1% perfor-

mance overhead, which falls to 10.1% once the read-misses happen every 4,000

instructions. The processor often needs the data from a read before it can do

any useful work and, therefore, will stall waiting for the data to be decrypted.

To understand the slowdown that would be incurred for Ryoan’s bench-

marks due to SGX encryption overheads, we measure the number of instruc-

tions retired per LLC miss, reported in Table 4.5. We focus on the enclaves

which dominate the performance of the benchmarks.

The “Memory controller SGX slowdown” column reports our projected

enclave slowdown based on the workloads LLC rate and measurements of our

LLC miss microbenchmark. Email shows the largest effect at a projected 32%

slowdown, much higher than the other benchmarks. The other applications

77

execute large numbers of instructions for every last level miss, putting our

estimate of SGX encryption overheads at less than 5%.

78

Chapter 5

Telekine: Secure Computing with Cloud GPUs

GPUs have become popular computational accelerators in public clouds.

Accuracy improvements enabled by GPU-accelerated computation are driving

the success of machine learning and computer vision in application domains

such as medicine [Hem17,SFB+15] transportation [NVIb], finance [GGKSC13],

insurance [NVI16], video games [SSR], and communication [NVI17a].

Trusted execution environments (TEEs) should, in principle, make the

cloud an option for users who refuse to trust the provider. Researchers have

proposed GPU-based TEEs [VVB18] and TEE extensions for GPUs [JTK+19],

though none have been built or deployed. However, as we argue below, a design

that simply composes components that run in hardware-supported CPU and

GPU TEEs will fail to provide strong security due to side channels.

GPU-accelerated applications have three main software components:

This chapter is based on a previous publication: “Telekine: Secure Computing with
Cloud GPUS”, by Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Sezekely, Yige Hu, Christo-
pher J. Rossbach, and Emmett Witchel in the proceedings of the 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), February, 2020, Santa Clara,
California, USA [HJM+20]. My contributions to this publication include designing and im-
plementing Telekine’s data-oblivious streams, and developing the arguments around GPU
trusted execution environments.

79

(1) an API and a user library (e.g., CUDA [NVIa] or HIP [HIP]) that provides

high-level programming functionality and executes on a CPU; (2) CPU-side

control code at the user and the system level that manages communication

with the GPU, and (3) GPU kernels (programs) that execute on the GPU

device itself. It is the data and code that moves between the CPU and GPU

that potentially creates side channels visible to CPU-side code.

An attacker can extract meaningful information from the execution

time of code on the GPU; through control of privileged software, a cloud

provider can easily compute these execution times on the CPU by observing

communication with the GPU. For example, we demonstrate a novel attack

on image-recognition, machine-learning models that allows malicious system

software to correctly classify images from ImageNet [DDS+09] used as input to

the model. By observing only the timing of a model trained to classify images

(the image model), we build a new model (the timing model) that classifies

images based on the execution timing of layers in the image model. Even if a

security-conscious user encrypts their input images (and decrypts them on the

GPU), a system administrator can use the GPU kernels’ timing information

(measured on the CPU) from the image model to classify the input images

anyway. We train the timing model to distinguish images of two classes with

78% accuracy. For more classes, accuracy decreases but stays above random

guessing.

We propose Telekine, a system that enables the secure use of cloud

GPUs without trusting the platform provider. GPU TEEs provide a secure

80

Client Machine

GPU API Calls

Application

LibTelekine

Data-oblivious
Streams

Trusted Untrusted

Cloud Machine

Relay

GPUGPUGPU

Relay

Cloud Machine

Relay

GPUGPUGPU

Cloud Machine

Relay

GPUGPUGPU

Figure 5.1: Telekine components and their organization.

execution environment but leave the user open to side channels when commu-

nication depends on secret data. Telekine makes communication with the GPU

TEE data oblivious, completely independent of secrets in the input data. Data

obliviousness is a strong property that excludes the existence of side-channel

attacks against CPU-side code and host/device communication whose observ-

able behavior (e.g., timing, memory accesses, DMA sizes, etc.) depends on

secret input data.

Telekine has three components (shown in Figure 5.1): libTelekine that

runs on a trusted user machine (a client), GPUs physically attached to a

cloud machine (a server) that supports GPU TEEs with specific security re-

quirements (§3.3.2), and the relay which facilitates communication between

libTelekine and the GPU. Telekine uses a GPU TEE because it needs a mech-

anism to protect GPU computation from the cloud provider; a GPU TEE is

tailored to that task.

Telekine protects the application and GPU runtime by moving it from

81

the cloud to the client. The advantage of this approach is that the user must

already trust their client machine; the application and user libraries are large

and complex and, therefore, prone to side-channel attacks, making them dif-

ficult to secure if they execute in the cloud. The disadvantage is that GPU

libraries assume a local GPU with a fast, high-bandwidth connection to the

CPU. Telekine decouples the user library from low-level GPU control by in-

terposing on the GPU API and efficiently forwarding API calls to the server

(a technique known as API remoting). API remoting has often been used

to virtualize GPUs [YPAR20, GMAC10, GGS+09, SCS09, VSB14, BBNLS10,

DIM+09,DPS+11,KSL+12,LNEAEG11,LC11,Bit], but to our knowledge has

never been used for security. A client using Telekine does not need to have a

GPU installed.

Telekine treats the CPU-side control code on the cloud server (“Relay”

in Figure 5.1) as completely untrusted, almost as if it were part of the network.

The client machine establishes a cryptographically secure channel directly with

the code executing on the cloud GPU. The network and the CPU-based code

on the server can delay the computation, but cannot compromise its privacy

or integrity.

Telekine secures the communication between the client machine and

the cloud GPU by transforming the user’s GPU API calls into data-oblivious

streams. Data-oblivious streams are similar to constant time defenses [ANB+18]

in that they aim to remove timing channels by ensuring that observable events

are deterministic regardless of secrets. Telekine constructs data-oblivious streams

82

by reducing all API calls to a sequence of code execution (launchKernel) and

data movement (memcpy) commands. It then schedules these commands at a

fixed rate, possibly creating new commands, or splitting memcpy commands

into fixed-size pieces. Fixed-sized, fixed-rate communication is data oblivious;

it ensures that any observable patterns are independent of the input data and,

therefore, devoid of side-channel information. Fixed-rate communication is

not a novel way to eliminate side channels, but Telekine’s design shows how

to apply it efficiently to modern GPU-based computing.

Given that Telekine requires a GPU TEE, it is logical to wonder why it

does not use a CPU TEE. After all, putting the application and programming

libraries into a CPU TEE would reduce the latency and increase the band-

width for communication between libTelekine and the GPU. Unfortunately,

Intel and ARM TEEs do not prevent side channels as part of their threat

model [Joh17, PS19]. Keystone [LKC+18] and Komodo [FBHP17] intend to

address side channels for RISC-V and ARM, respectively, but work is ongoing.

Also, making existing applications data oblivious is difficult for programmers,

requires access to source code (not needed by Telekine), and often slows down

a program greatly (e.g., Opaque [ZDB+17] slows down data analytics by 1.6–

46×). Should future CPU TEEs evolve to address side channels, Telekine can

use them. Much of Telekine focuses on securing the communication between

trusted components, which can be an improved CPU TEE and a GPU TEE,

or they can be the client machine and server GPU TEE, as they are in our

prototype.

83

Contributions. Telekine is the first system to offer efficient, secure execu-

tion of GPU-accelerated applications on cloud machines under a strong and re-

alistic threat model. We use Telekine to secure several GPU-accelerated appli-

cations via two frameworks: the MXNet [CLL+15] machine learning framework

and the Galois graph processing system [PP16]. On a realistic testbed, Telekine

provides strong secrecy and integrity guarantees, including side-channel protec-

tion. MXNet [CLL+15] training for three different, modern image recognition

models incurs a 10–22% performance penalty relative to a baseline with a lo-

cally attached GPU. MXNet inference for the same models over a connection

from Austin, TX to the Vultur’s Dallas, TX datacenter [Vul] incurs a penalty

of 0-8% for batch sizes of 64 images. Telekine runs graph algorithms using

Galois [PP16] on one and two GPUs with 18%–41% overhead.

This paper makes the following contributions.

� We demonstrate a CPU-side timing attack on deep neural networks that

allows a compromised OS to correctly classify images in encrypted input

(§5.3).

� We provide a design and prototype for Telekine, a system that eliminates

CPU-based side-channel attacks against a GPU TEE with a novel variant

of API remoting to execute secret-dependent code on the GPU TEE and

a trusted client (§5.4).

� We thoroughly evaluate the performance, robustness, and security of

Telekine, protecting a variety of important workloads on one and two

GPUs: machine learning and graph processing (§5.6).

84

5.1 Telekine speciation of the malicious public cloud
threat model

In all current cloud GPU platforms, the cloud provider’s privileged soft-

ware, and hence administrators, can gain easy access to GPU state, creating

a significant attack surface including explicit channels such as GPU memory,

firmware, and execution context. Work in this area agrees on the vulnerability

of any program state on the GPU to privileged software [VVB18,JTK+19].

Telekine assumes a GPU TEE, with capabilities similar to current re-

search proposals like Graviton [VVB18]. The details can vary, but a GPU

TEE establishes secure memory on the GPU device and provides a protocol to

initiate a computation that can be remotely attested to start from the correct

state (code and initial data) and execute privately and without interference

from the CPU side. We provide additional detail on Telekine’s TEE require-

ments in Section 3.3.2.

GPU TEEs do not (by themselves) secure communication with the

CPU, and our attack (§5.3) shows how much information there is in the pre-

cise timing of CPU/GPU communication. Telekine protects communication

with the GPU, guaranteeing that the adversary cannot learn about input data

directly or through side channels, including timing channels.

While secure control of a GPU has been proposed [VVB18, JTK+19],

there has been little work securing side channels. These side channels undercut

the security of the TEE. In addition to the timing attack we developed (§5.3),

AES key extraction using shared GPU hardware [JFK17,JFK16,GESM17] has

85

been demonstrated. And recent side-channel attacks [NNQAG18] have shown

practical methods to fingerprint websites using performance counters observed

during GPU rendering in the browser.

5.1.1 Guarantees

Telekine provides the following secrecy properties, which prevent ex-

plicit or implicit data flow from input data to an external observer.

S1 (content): Messages are encrypted to ensure an observer cannot directly

read their content.

S2 (timing): The transmit schedule for messages is fixed. Any transmission

delays are independent of input data.

S3 (size): The size of each message is fixed. Telekine pads and/or splits

messages to achieve fixed-sized messages.

Telekine also provides the following integrity properties to ensure that

any result the user receives is either a result that could have been generated

by a GPU hosted by a completely benign cloud provider, or an error.

I1 (content): The content of all communication is protected by an end-to-end

integrity check; a message authentication code (MAC) allows Telekine

to detect modifications, returning an error if any are detected.

I2 (order): Each message carries a sequence number which allows Telekine to

detect out of order messages. The sequence numbers also prevent replay

attacks.

I3 (API-preserving): Commands issued by the application should affect

86

GPU state in the same way they would on a local GPU, regardless of

any transformations that Telekine applies.

GPU commands have semantics that Telekine must maintain for cor-

rectness. For example, GPU runtimes expose a stream [NVI17b] abstraction to

application code. API calls issued by the application on the same stream are

executed serially in the order they were issued. A kernel launched from a par-

ticular stream will block the completion of subsequent API calls on that stream

until that kernel terminates. Applications can have many streams which map

to different command queues exposed by hardware. API calls made on sep-

arate streams can be executed in parallel. Telekine must respect the data

dependence semantics of streams.

5.1.2 Limitations.

Physical side channels and denial of service attacks are out of scope.

In situations where an adversary monitoring physical side channels like tem-

perature [MRR+15], power [KJJ99], or acoustical emanations [CLL+17] is a

concern, Telekine would need to be augmented with other techniques to main-

tain security. In our threat model, a cloud provider wishing to deny service

can always do so, e.g., by interrupting the network or refusing to run user

processes.

Telekine provides clients a mechanism to disguise their end-to-end run-

time but does not impose policy. Applications can choose the most efficient

policy for their security needs. We believe end-to-end runtime is a poor pre-

87

dictor of input data (and our experiments in Section 5.3 bear this out), further

justifying the clients setting policy.

5.2 GPU Trusted Execution Environment requirements

Telekine assumes GPU TEE support similar to Graviton [VVB18] to

prevent MMIO access to GPU status and configuration registers during se-

cure execution. Due to Telekine’s focus on side channels, it has requirements

beyond the previously proposed GPU TEEs. These requirements are more

straightforward to provide than the core TEE functionality.

Eliminate GPU side channels. Some TEE designs allow different ten-

ants/principals to execute concurrently (e.g., SGX, Keystone), sharing the

underlying hardware. Concurrent execution is attractive from a utilization

perspective, but it provides a rich side-channel attack surface that has plagued

the security of CPU TEE designs. Telekine assumes side channels from con-

current principals (e.g., memory access timing and bandwidth) do not exist

on the GPU TEE. A conservative design that prevents hardware side channels

is to disallow concurrent execution. Graviton TEEs scrub their state (e.g.,

registers, memory, caches) after resources are freed, so there is no danger of

tenants observing transient state from any previous computation.

Conceal kernel completions. GPUs signal the CPU via an interrupt when

a kernel has completed its execution. Interrupt timing leaks information about

88

the kernel’s runtime. Rather than rely on interrupts, Telekine uses data-

oblivious streams (§5.4.1) that include tagged buffers that allow the GPU

to communicate computational results back to the client. The platform only

sees DMA from the GPU to untrusted CPU memory at a fixed rate.

Support no-op kernel launches. Dependences between GPU kernels often

cause the launch of one kernel to wait for another’s completion, which provides

indirect timing information. The GPU TEE must support a no-op kernel

launch command so that Telekine can generate cover traffic to ensure the

adversary sees kernel launches at a fixed rate.

Timely command consumption. The GPU TEE should consume its com-

mand queue independent of how long kernels execute on the GPU. If the GPU

waits until each kernel completes before dequeuing the next launch command,

it can fall behind the input queue fill rate, allowing the input queue to fill.

The adversary can detect this situation by observing how often the encrypted

queue content changes, creating a proxy for kernel execution time. The GPU

should consume command queue entries at a fixed rate, discard the no-ops,

and store the real commands internally until the can execute them. Telekine

can hold back real kernel launches and send no-op launches in their places to

ensure these internal GPU queues do not fill up.

89

5.3 Example side-channel attack

Telekine addresses software attacks launched by an adversary resident

on a cloud host, such as those launched by a malicious system administrator

or a network-based attacker who has compromised the platform’s privileged

software. These attacks use privileged software to compromise the privacy or

integrity of user code and data. Telekine is particularly focused on protecting

against timing channels because effective, general-purpose attacks using timing

channels have recently been demonstrated at the architecture level [KGG+18,

LSG+18,VBMW+18,SLM+19], the OS level [vSGBR18,XCP15], and the GPU

programming level [JFK17,JFK16]. Modern CPU TEEs exclude side channels

from their threat model [Joh17, PS19, GESM17], leaving current hardware-

supported security primitives vulnerable to side-channel attack. Telekine of-

fers a unique and efficient security solution for cloud resident, GPU-based

computation.

We demonstrate a proof-of-concept attack on machine learning infer-

ence in which the adversary uses the execution timing of individual GPU ker-

nels to learn information about encrypted input data. Our attack allows priv-

ileged software on the cloud host to correctly classify images using only the

timing of GPU kernel execution obtained on the CPU. The attacker can train

their timing model on their own input; they do not need the victim’s training

data. The image data remains encrypted while on the CPU, and the attack

does not require any access to GPU architectural or microarchitectural state

(including GPU timers).

90

2 10 20 30
Number of Classes

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Per-kernel: Trained
Per-kernel: Random
Per-kernel: Zero
End-to-End: Trained
Random Guess and worse

Figure 5.2: Accuracy of multiclass classification for side-channel attacks for
increasing numbers of input classes.

Attack basics. Convolutional neural networks (CNNs) are a popular neu-

ral network architecture for analyzing images [HZRS16,SVI+16,HLWvdM17].

Each network consists of multiple layers, including convolutions, which are

good at detecting the input image features that the remainder of the network

can use to classify the image. When CNNs are executed on a GPU, the com-

putation for each layer roughly corresponds to the execution of a single GPU

kernel. While the actual mapping between layers and kernels is often more

complex, the intuition behind our attack is that the timing of the execution of

certain CNN layers (and hence their GPU kernels) indicates the presence or

absence of certain features within the input image. This mapping makes the

per-layer execution time itself a rich feature.

Telekine defeats the attack by removing the adversary’s ability to infer

the timing of individual kernels. The adversary retains only the ability to

91

measure the end-to-end runtime of the inference task. However, our data

show that end-to-end runtime provides very little predictive value, making the

attack not much more accurate than randomly guessing (Figure 5.2). Telekine

gives users the mechanism to disguise their end-to-end execution time, should

they decide to do so (§5.1.2).

Attack details. We demonstrate this attack on ResNet50 [HZRS16], a CNN

widely used for image recognition, using the timing of GPU kernel completion

events as detected by the operating system on the CPU (though we monitor

a function in the GPU’s user-level runtime for ease of implementation). We

evaluate the accuracy of our attack using 5-fold cross-validation.

We start with a pre-trained model for the standard ImageNet [DDS+09]

dataset, which contains 1,000 different image classes. Figure 5.2 shows the

accuracy of distinguishing image classes based on the timing of the pre-trained

model’s layers (Per-kernel: Trained), versus the same attack using only end-to-

end timing information (End-to-end: Trained). The accuracy of the per-kernel

classifier is startlingly good for small numbers of classes: 78% for two classes,

55% for three, and 42% for four. As the number of classes of input images

increases, the accuracy of our classification declines, but it remains much better

than random guessing, outperforming guessing by over 1.9× even among 30

input image classes.

We believe the root cause of the attack is timing dependent GPU opera-

tions, probably multiply by zero. We compare a pre-trained model (Per-kernel:

92

Batch purity Accuracy
0.25 29.3%
0.4 33.0%
0.6 41.0%
0.8 50.0%
0.9 56.1%
1.0 65.4%

Table 5.1: Accuracy distinguishing four classes with batches of size 32, varying
the percentage of each batch containing images from the target class.

Trained with no zero-valued weights), a randomly initialized model (Per-kernel:

Random with 0.2% zero-valued weights), and a model whose weights are all

zero (Per-kernel: Zero with 100% zero-valued weights). The zero model has

bad accuracy that is close to random guessing. A randomly initialized model

is best, followed by the pre-trained model.

We generated these results using MXNet [CLL+15] ported to HIP on

the ROCm version 1.8 stack for AMD GPUs, the version used in the prototype;

we saw similar results on the 2.9 version. Preliminary tests showed that this

specific attack is much less powerful on NVIDIA GPUs.

Batched classification. Because inference is often done in batches, we ex-

amine the accuracy of a batched attack. We construct batches by splitting each

ImageNet class into disjoint training and test sets. Images are then randomly

sampled from each of these sets to form the batches.

We present the accuracy of our attack when distinguishing four Ima-

geNet classes in batches of size 32 (Table 5.1.) Each batch consists of the

93

given fraction of images from a primary-class (Purity), and randomly selected

images from the remaining three classes. Our objective is to correctly identify

the primary class.

Batches help, with the accuracy of our attack improving with larger

batch sizes. Larger batches execute more operations, effectively amplifying

the timing signal our attack relies on. Moreover, larger batches smooth out

execution timings for outlier images, which would otherwise be less recogniz-

able to our attack model. When distinguishing four classes (Table 5.1), the

batched attack is better than random guessing even when only 25% of the

input images come from the target class. The accuracy increases with higher

batch purity, outperforming single images by up to 64%.

5.4 Design

Telekine secures GPU-based computation from active attackers, includ-

ing side-channel threats. Side channels include the execution timing of individ-

ual GPU kernels and data movement to and from the GPU. Telekine achieves

its security by transforming an application’s computation so that all com-

munication—including data movement—among trusted components is data

oblivious. Telekine only trusts the client machine and the in-cloud GPU TEE.

Therefore, it must efficiently coordinate the computation between these enti-

ties, even though communication occurs over a wide area network, rather than

over higher-bandwidth, lower-latency fabric like a data center network or a

PCIe bus.

94

Cloud Machine

relay

Client Machine

LibTelekine

API calls from Application

GPU
Kernel

Launches

Data

Movement

Memory

Command

Processor

DMA

Command

Queue

Trusted Untrusted Channel KeysData
Encrypted

Data

Secure

Channel

Figure 5.3: Detailed Telekine overview.

Telekine consists of three components (depicted in Figure 5.1, with

detail in Figure 5.3).

� LibTelekine: a library that intercepts GPU API calls from the applica-

tion and transparently transforms them into a data-oblivious command

stream.

� Relay: an untrusted process that runs in the cloud and directs the client’s

command stream to the GPU.

� GPU: a GPU (or multiple GPUs) with TEE support that meets Telekine’s

requirements (see §3.3.2 for details).

LibTelekine is linked into the application running on the client. During its

execution, the application issues a stream of GPU commands through the

normal GPU API. Similar to normal API remoting [DPS+10, VSB14, Bit],

libTelekine redirects API calls made by the client to a server process with a

GPU runtime–the relay on the cloud machine. Telekine treats the relay almost

95

as if it were part of the network, relying on it to communicate with the GPU

but protecting that communication with end-to-end techniques. The relay is

not part of Telekine’s trusted computing base.

Authenticated encryption (AES-GCM [Dwo07] in our prototype) and

sequence numbers protect all communication between libTelekine and the

GPU. This protection creates a secure channel satisfying the secrecy property

S1 (content) and the integrity properties I1 (content) and I2 (order) (described

in §5.1.1), ensuring that the GPU commands issued by libTelekine can only

be read by the GPU, and any tampering or reordering is detectable. How-

ever, by observing when messages are exchanged with the GPU (regardless of

whether they are encrypted), the adversary can get timing information about

the computation on the GPU.

Telekine’s goal is to remove all timing information from the encrypted

stream of GPU commands. It removes timing information by sending com-

mands (GPU runtime API calls like launchKernel and memcpy) at a fixed

rate, independent of input data. Fixed-rating is a simple idea, but Telekine

must overcome two major challenges to fix-rate GPU communication.

1. Different GPU command types are distinguishable because they have dif-

ferent sizes, and they result in different communication patterns with the

GPU. (e.g., launchKernel commands interact with MMIO ring buffers

and memcpy commands are handled using DMA). Telekine must ensure

that the attacker’s ability to distinguish between these commands con-

veys no information about the input data.

96

2. Conventional GPU command streams (§5.1.1) exhibit a variety of data-

dependent behavior whose timing is externally visible (e.g., a kernel

launch after a data transfer will wait for the data transfer to finish).

Telekine must maintain the ordering semantics induced by such data

dependencies.

Telekine introduces a new primitive to overcome these challenges: data-

oblivious streams. Data-oblivious streams transparently replace conventional

GPU streams (and applications may have more than one), maintaining their

semantics while making their communication with the GPU data oblivious.

First, they separate commands by type and schedule each type independently.

Second, they split, pad, and batch commands of each type so that the en-

crypted payload is always the same size for messages of that type, satisfying

S3 (size). Third, they inject management commands as needed to maintain

data-dependencies across message types, satisfying I3 (API-preserving). Fi-

nally, data-oblivious streams send the transformed commands according to a

fixed schedule, satisfying S2 (timing).

The relay, privileged software on the cloud machine and the network

stack can delay commands since they are under complete control of the (pos-

sibly adversarial) cloud provider. However, they cannot delay commands in

a way that leaks input data because all observable behavior of the trusted

computing base (including its timing) is independent of input data.

97

5.4.1 Data-oblivious stream construction

Constructing data-oblivious streams only requires reasoning about mem-

cpy and launchKernel commands. The TEE takes care of initialization

(§3.3.2). The only other runtime commands deal with stream synchronization,

and Telekine transforms those commands into memcpy and launchKernel com-

mands as well (discussed fully in §5.4.4). memcpy commands are visible to the

untrusted host’s privileged software because GPU drivers use DMA for efficient

data transfers. In Telekine, the data itself is protected and copied to/from a

fixed staging area in untrusted GPU memory, so the destination/source of the

memcpy does not leak information.

Conventional GPU streams can create timing channels from memcpy

and launchKernel commands because a memcpy command waits for all previ-

ous launchKernel commands on the same stream. To eliminate this channel,

Telekine uses two GPU streams to construct a single data-oblivious stream.

Telekine uses one GPU stream to launch the application’s kernels; this stream

is called the ExecStream. Telekine uses the other stream—called the XferStream—

to move data to and from the GPU. Telekine ensures that commands on the

XferStream never leak information about the kernel execution time by waiting

for commands on the ExecStream.

The ExecStream. Application kernels are all launched on the ExecStream.

LibTelekine maintains a queue of the launchKernel commands requested by

the application and releases the commands in order according to the fixed-rate

98

schedule. The GPU consumes these commands independently of any ongoing

kernel execution and buffers them internally since their execution must be seri-

alized according to GPU stream semantics. Telekine honors data dependencies

between memcpy and launchKernel commands by inserting data management

kernels that block the progress of the ExecStream by spinning until the data

is in place.

The XferStream. Telekine launches data transfers requested by the ap-

plication on the XferStream. Unlike launchKernel commands, memcpy com-

mands are directional (i.e., client-to-GPU and GPU-to-client), and directions

are detectable. For example, because the adversary can observe interaction

with the network, it can differentiate between messages that came over the

network in transit to the GPU, and messages copied from the GPU to be sent

over the network. LibTelekine maintains separate queues for each direction and

schedules them independently to avoid leaking information. Data for client-to-

GPU transfers starts on the client, flows through the relay, and into untrusted

memory on the GPU. LibTelekine then enqueues a kernel, which moves the

data from the untrusted staging memory into trusted GPU memory. Simi-

larly, in the GPU-to-client direction, Telekine first enqueues a launchKernel

on the XferStream to move the data into untrusted GPU memory, then issues

a memcpy to copy it to the relay where it can be transferred over the network

back to the client.

99

Fixed-size commands. Telekine ensures that all memcpy commands are the

same size by splitting and padding the memcpy commands issued by the ap-

plication to a standard size. When there are no pending memcpy commands,

Telekine maintains the same data flow rate by scheduling dummy, standard-

sized memcpys to/from a staging buffer. Similarly, Telekine pads all launchK-

ernel commands are to the same size (320 bytes in our prototype). When no

launchKernel command is available, Telekine schedules no-op launchKernel

commands.

Schedules. Any schedule Telekine uses for GPU communication is secure so

long as it does not depend on the data being protected. Our prototype uses

simple schedules which send a fixed number of fixed-sized commands after

each fixed-time interval. For instance, Telekine might launch 16 kernels on the

ExecStream every three milliseconds, and send then receive 4MB of data every

six milliseconds on the XferStream.

Schedules can leak the category. While scheduling work at a fixed rate

is a well-known technique to avoid side-channel leakage, the exact schedule

is relevant to performance. We report our schedules in Table 5.2, and they

are the same for all tasks of a given category, e.g., training different machine

learning models with MXNet. However, they can differ across categories, e.g.,

Galois has a different ExecStream schedule from MXNet (§5.6). Under our

threat model, the adversary would be able to differentiate these workloads

100

Algorithm 1 Telekine’s replacement functions for memcpy and launchKernel.
Splitting and padding steps are omitted for brevity.
1: function LaunchKernel(kern, args...)
2: Enqueue(kernelQueue, {kern, args})
3: end function
4:

5: function MemcpyH2D(src, dst)
6: buf ←ChooseTaggedBuffer()
7: LaunchKernel(copy in, buf, dst)
8: Enqueue(dataQueueH2D, {src, buf })
9: end function

10:

11: function MemcpyD2H(src, dst)
12: buf ←ChooseTaggedBuffer()
13: LaunchKernel(copy out, src, buf)
14: Enqueue(dataQueueD2H, {buf, dst})
15: end function

from their network traffic. A user can always choose a more generic, but lower

performing schedule if this is a concern.

5.4.2 Telekine operation

Algorithm 1 and Algorithm 2 provide a high-level description of Telekine’s

data-oblivious streams. In Algorithm 1, Telekine intercepts the application’s

calls to launchKernel and memcpy and transforms them into interactions with

queues: kernelQueue, dataQueueH2D, and dataQueueD2H (splitting, padding,

and encryption steps are omitted for brevity). The Telekine threads shown in

Algorithm 2 dequeue the commands and release them to the GPU according

to the schedule. Telekine waits at lines 7, 18, and 29 for the next available time

slot, ensuring that interactions with the queues do not influence the messages’

101

Algorithm 2 Periodic tasks performed by Telekine according to the schedule.
Encryption and decryption steps are omitted for brevity.
1: loop . ExecStream Thread
2: if Empty(kernelQueue) then
3: op ←no op
4: else
5: op ←Dequeue(kernelQueue)
6: end if
7: WaitForScheduledTime()
8: RemoteLaunchKernel(op)
9: end loop

10:

11: loop . XferStream Client-to-GPU (H2D) Thread
12: if Empty(DataQueueH2D) then
13: src ←dummy CPU
14: dst ←ChooseTaggedBuffer()
15: else
16: {src, dst} ←Dequeue(dataQueueH2D)
17: end if
18: WaitForScheduledTime()
19: RemoteMemcpy(src, dst)
20: end loop
21:

22: loop . XferStream GPU-to-Client (D2H) Thread
23: if Empty(DataQueueD2H) then
24: src ←ChooseTaggedBuffer()
25: dst ←dummy CPU
26: else
27: {src, dst}←Peek(dataQueueD2H)
28: end if
29: WaitForScheduledTime()
30: RemoteMemcpy(src, dst)
31: if dst 6= dummy CPU then
32: if TagMatches(dst) then
33: Dequeue(dataQueueD2H)
34: end if
35: end if
36: end loop

102

timing.

Most memcpy commands have strict ordering requirements with respect

to kernels that operate on their data. The memcpy then launchKernel idiom

ensures that the launched kernel has fresh data to process. While Telekine de-

couples memcpy commands by scheduling them on their own stream for security,

it needs to preserve the original ordering semantics expected by the application.

Telekine maintains these semantics by injecting its own data management ker-

nels into the ExecStream (shown on lines 7 and 13 of Algorithm 1) to enforce

the ordering expected by the application. These data management kernels

operate on tagged buffers, which Telekine uses to synchronize data access.

Tagged buffers. Tagged buffers are pre-allocated staging buffers on the

GPU, each with an associated tag slot. Telekine assigns every memcpy opera-

tion a tagged buffer and a unique tag, represented by “ChooseTaggedBuffer” in

Algorithm 1 and Algorithm 2. Data management kernels producing data (e.g.,

copying out the result of a kernel computation) write the tag into the tag slot

of the chosen tagged buffer after the operation has completed and a memory

barrier completes. Data management kernels that consume data (e.g., some

kernels wait for data a kernel expects to use as input) wait until the tag slot

of the assigned buffer contains the expected value. They cannot be sure the

buffer data is valid until the tag value matches its expectation.

103

Data management kernels. Telekine inserts its own data management

kernels into the ExecStream; these kernels either produce or consume tagged

buffers depending on the direction of the transfer. There are two kernels:

copy_in and copy_out. Both kernels take an application-defined memory lo-

cation, a tagged buffer, and a tag as arguments. For CPU-to-GPU memcpys,

libTelekine inserts a copy_in launch into the ExecStream. The copy_in will

repeatedly check the tag slot of the buffer; completing the copy to the applica-

tion’s buffer only after verifying the tag slot matches the tag it was given as an

argument. To service GPU-to-CPU memcpys, Telekine inserts a copy_out into

the ExecStream after the application kernel, which generates the data. The

copy_out writes the data to the assigned tagged buffer, followed by the tag to

signal to Telekine that the data is ready. Since libTelekine runs on the client,

it has no way of knowing when the copy out has completed until the tagged

buffer has been copied back, so it will retry the same GPU-to-CPU copy until

the tag is correct corresponding to a complete copy. This check is represented

by the PEEK operation on line 27 of Algorithm 2; libTelekine only dequeues

the operation after verifying that the copy_out kernel did its work on line 32.

GPU-to-GPU data copies. Emerging hardware supports dedicated, high-

bandwidth, cross-GPU communication links such as NVLink [Fol16]. NVLink

improves cross-GPU data copy efficiency but does not change the fundamental

communication mechanisms used in a GPU stack. Telekine currently imple-

ments GPU-to-GPU copies as two copies: one from the first GPU back to the

104

client and the second from the client to the second GPU. Direct GPU-to-GPU

copies using NVLink would be far more efficient, but to be data oblivious, they

would have to occur at a fixed rate. We leave this task for future work.

Discussion. The XferStream is carefully constructed so that it never syn-

chronizes with the ExecStream. The XferStream contains DMA operations,

which the OS can detect; if application kernels on the ExecStream occupy the

GPU causing the encryption kernels on the XferStream—and transitively the

DMAs—to wait, then the platform can learn some information about kernel

execution times. There may still be leakage between the XferStream and the

ExecStream because we cannot guarantee that kernels of the former will not

interfere with the latter. However, we believe this leakage to be hard to exploit

in practice, we have not seen it in any of our benchmarks, and we expect that

future GPU features like strict priority [NVI18] or preemption [TGC+14] will

allow Telekine to seal the leak.

5.4.3 Data movement example.

Figure 5.4 how Telekine transforms application commands into equiv-

alent, data-oblivious commands on the ExecStream and XferStream. The

application issues three commands: 1 copy data to the GPU, 2 launch a

kernel to process that data, and 3 copy the results of the computation out

of the GPU back to the CPU.

105

/* copy data to GPU */

memcpy(GPUbuf_0,CPUbuf_0);

/* compute result */

launchKernel(AppKern,GPUbuf_1,

GPUbuf_0);

/* copy result from GPU */

memcpy(CPUbuf_1,GPUbuf_1);

/* wait for memcpy */

launchKernel(copy_in,GPUbuf_0,

TAGbuf_0,t0);

/* do App’s work */

launchKernel(AppKern,GPUbuf_1,

GPUbuf_0);

/* notify result ready */

launchKernel(copy_out,TAGbuf_1,

GPUbuf_1,t1);

/* encrypt data */

CPU_encrypt(out_buf,CPUbuf_1,key);

/* copy encrypted data to GPU */

memcpy(STGbuf_0, out_buf);

/* decrypt and notify */

launchKernel(decrypt, TAGbuf_0,

STGbuf_0, key, t0);

do{

/* encrypt on GPU */

launchKernel(encrypt,STGbuf_1,

TAGbuf_1,key);

/* copy to client */

memcpy(in_buf, STGbuf_1);

/* decrypt */

CPU_decrypt(in_buf,in_buf,key);

} while (TAG(in_buf) != t1);

CPU_memcpy(CPUbuf_1,in_buf);

Application Commands Telekine Commands

ExecStream XferStream

1

2

3

Figure 5.4: API calls made by the application and their mapping to underlying
commands performed by Telekine.

1 : The application requests a memcpy from CPUbuf_0 to GPUbuf_0.

In response, Telekine chooses a tag, t0, and tagged buffer, TAGbuf_0, for this

operation. Then, it enqueues a kernel, copy_in, on the ExecStream. The

copy_in kernel will spin on the GPU, using atomic operations to check the

end of TAGbuf_0 until it sees t0. Then it copies the contents of TAGbuf_0

into GPUbuf_0. On the XferStream, Telekine encrypts the data, then copies

the encrypted data to a staging buffer in untrusted GPU memory STGbuf_0.

Finally, Telekine launches a kernel, decrypt, on the XferStream, which reads

the encrypted data out of untrusted memory and decrypts it into TAGbuf_0.

After the data is written, the tag t0 is appended after a memory barrier,

signaling to copy_in that the data is ready.

2 : The application launches its kernel, AppKern, which processes

the data in GPUbuf_0 and writes its result into GPUbuf_1. Since AppKern

106

is launched on the ExecStream after copy_in, it will wait for copy_in to com-

plete, ensuring that the data will be in GPUbuf_0 before AppKern starts. The

platform cannot detect that AppKern has started.

3 : The application issues a request to copy the results of AppKern

from GPUbuf_1 to CPU_buf1. In response, Telekine again chooses a tag and

tagged buffer, t1, and TAGbuf_1, respectively, and immediately enqueues a

copy_out kernel on the ExecStream. After the application’s kernel, AppKern,

has completed, copy_out moves the result of its computation in GPUbuf_1 into

TAGbuf_1 then atomically appends t1. While waiting for copy_out to finish,

Telekine periodically encrypts TAGbuf_1 into a staging buffer in untrusted

memory, STGbuf_1 then issues a memcpy operation to copy the contents of

STGbuf_1 to a client-side buffer, in_buf. Telekine decrypts in_buf and checks

the tag. If the tag matches t1, copy_out and AppKern must have completed,

and the data can be copied into CPUbuf_1. If not, this process will be repeated

during the next scheduled GPU to client transfer.

5.4.4 Synchronizing data-oblivious streams

Applications sometimes wish to synchronize with their GPU streams

(i.e., wait for all outstanding commands to complete), or synchronize one GPU

stream with another (i.e., ensure another stream has completed some opera-

tion, n, before this stream starts operation, m). Telekine handles both of these

cases by injecting kernels that increment a counter in GPU memory between

kernels in the ExecStream.

107

The increment kernel only runs after all previous kernels in the stream,

providing an accurate count of how many application kernels have executed

because of stream semantics. Telekine copies that counter back to the client

periodically and can block the application thread until all submitted work has

completed.

5.5 Implementation

The Telekine prototype is based on AMD’s ROCm 1.8 [AMD], an open-

source software stack for AMD GPUs. Telekine requires an open-source stack

because we split its functionality between user and cloud machines. NVIDIA

is generally thought to have higher hardware and software performance as well

as better third-party software support. But NVIDIA only officially supports

closed-source drivers and runtimes.

LibTelekine and the relay. All applications were ported to use HIP [HIP],

the ROCm CUDA replacement. LibTelekine marshals the arguments of HIP

API calls before sending them over a TLS protected TCP connection to the re-

lay to support initialization. The libTelekine and relay prototype are use code

generated by AvA [YPAR20]; they total 8,843 and 5,650 lines of C/C++/HIP

code, respectively (measured by cloc [clo]).

GPU TEE. GPU TEE requirements are made explicit in Section 3.3.2, and

most of those requirements are safety properties that do not impact perfor-

108

ExecStream XferStream
Benchmark Quantum Size Quantum Size Bandwidth
Microbench 15ms 32kerns 30ms 1MB 533 Mb/s
MXNet 15ms 512kerns 30ms 1MB 533 Mb/s
Galois1 15ms 32kerns 30ms 1MB 533 Mb/s
Galois2 15ms 32kerns 30ms 1MB 533 Mb/s

Table 5.2: Data-oblivious schedule parameters and the network bandwidth
required. MicroBench from §5.6.1; MXNet from §5.6.2; Galois1 executes on
one GPU, Galois2 on two from §5.6.3. ExecStream sizes are the number of
kernel launches, each of which is 320 bytes. XferStream streams contribute
twice their size to bandwidth consumption because Telekine copies data in
both directions at every quantum.

mance. A notable exception is the cryptography required to secure the secrecy

and integrity of kernel launch commands. We model the timing of these fea-

tures by decrypting kernel launch commands in the relay.

5.6 Evaluation

We quantify the overheads of the security Telekine provides by com-

paring it to an insecure baseline: applications run on cloud provider machines

that offload computation to GPUs directly through the GPU runtime.

We measure Telekine across two testbeds. The first is the simulated

testbed, which simulates the wide-area network (WAN) latencies and band-

width, providing a controlled environment for measurement. The second is

the geodist testbed in which the server and client are geo-distributed and con-

nected by the Internet. Both testbeds use the same “cloud machine” (the

server), which has an Intel i9-9900K CPU with eight cores @3.60GHz, 32GB

109

of RAM, and two Radeon RX VEGA 64 GPUs each with 8GB of RAM. All

machines are running Ubuntu 16.04.6 LTS with Linux kernel version 4.13.0,

and AMD’s ROCm-1.8 runtime and HIP-1.5 compiler.

In the simulated testbed, the client has an Intel Xeon E3-1270 v6 pro-

cessor with four cores @3.8GHz and 32GB of RAM. Both this client and the

server have a Gtek X540 10Gb NIC, which we connect directly. We simu-

late a client-to-cloud network connection in a controlled environment using

netem [net19], which allows us to add network delays and limit bandwidth.

We always limit the bandwidth of the connection to 1Gbps, and unless oth-

erwise mentioned, we add delays in both directions so that the total round

trip time (RTT) is 10ms. These parameters are conservative for a network

connection to an edge cloud server [YHQL15,CP17].

In the geodist testbed, the client is a VM hosted by vultr [Vul] in their

Dallas, TX datacenter (the server is in Austin, TX). The VM has eight vCPUs

and 32GB of RAM. We measured the RTT between the server and this client

at 12ms, and the average bandwidth at 877Mbps.

Different applications use different schedules to get good performance,

though Table 5.2 shows strong similarity among the data-oblivious schedules

we use for evaluation.

5.6.1 Telekine performance tradeoff

Figure 5.5 shows the performance tradeoff for a microbenchmark with

16MB of input and output and a GPU kernel with a configurable running time

110

ResNet InceptionV3 DenseNet

Model size 97.5 MB 90.9 MB 30.4 MB

Input size

Input image 224x224x3 299x299x3 224x224x3
Batch size 64 64 48
Data size per batch 9.2 MB 16.4 MB 6.9 MB

Single-GPU training baseline

T-put 20.27 MB/s 11.05 MB/s 13.57 MB/s
T-put (less sync) 22.69 MB/s 11.66 MB/s 17.46 MB/s

Table 5.3: Overview of machine learning training on MXNet. The input size is
given in pixel dimensions, batch size in images per GPU. T-put is throughput.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6
GPU computation time (in seconds)

0%

200%

400%

600%

800%

Sl
ow

do
wn

 w
.r.

t.
ba

se
lin

e +Data oblivious scheduling (Telekine)
+Encryption
API remoting

Figure 5.5: A microbenchmark that shows how Telekine overheads decrease as
the running time of the GPU computation increases.

111

on the simulated testbed. The different lines show the costs of specific sources

of overhead. The“API remoting”line uses the XferStream and the ExecStream

over the network. The “+Encryption” line adds encryption to API remoting.

Finally, the “Data-oblivious scheduling” line adds the data-oblivious schedule

described in Table 5.2 to encryption. When the GPU kernel executes for only

0.14 seconds, the overhead of Telekine is nearly 8×. Once the computation

takes 4.4s, the overhead is only 22%. Telekine is a remote execution system;

it makes communication more expensive because of its oblivious scheduling

as well as network delay and limited bandwidth. It is most efficient when

computation dominates communication, which is the case for our benchmarks.

5.6.2 Machine learning algorithms

We port MXNet [CLL+15], a state-of-the-art machine learning library,

to run on the HIP runtime. Our port is based on MXNet v1.1.0 (git commit

07a83a03). We also use AMD’s MIOpen library for efficient neural network

operators. Some parts of MXNet adaptively choose from different GPU kernel

implementations by measuring execution times on the available hardware and

choosing the most performant option. To ensure the baseline and Telekine

are running the same kernels for measurement purposes, we record the kernels

chosen by the baseline and hard-code those kernel choices for all runs.

Optimizing MXNet. We applied several optimizations to MXNet, which

help to mitigate the fact that Telekine is communicating with the GPU over

112

ResNet InceptionV3 DenseNet0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d
Ru

nt
im

e

1.00 1.00 1.00
1.10 1.06

1.131.15
1.07

1.161.19
1.10

1.22

Baseline
+API remoting

+Encryption
+Data oblivious scheduling (Telekine)

Figure 5.6: Performance of machine learning training algorithms using a single
GPU with Telekine on the simulated testbed.

ResNet InceptionV3 DenseNet
1.23× 1.08× 1.20×

Table 5.4: Performance of machine learning training algorithms on Telekine,
measured on the geodist testbed.

a WAN:

� The models we evaluate represent the pixel channels of the input

bitmaps using 4-byte floating point quantities, even though they range in in-

teger values from 0 to 255. To save network bandwidth, we send bytes instead

of floats, reducing bandwidth by 4×. Bytes are changed back floats on the

GPU.

� We determined that MXNet was overly conservative in its GPU syn-

chronization strategy and were able to reduce the number of synchronizations it

performs by removing unnecessary calls to hipStreamSyncronize (“less sync”

in Table 5.3). Telekine also optimizes synchronization calls by using tagged

113

buffers (§5.4.1) to coordinate data transfers.

Machine learning training. We evaluate the training performance of deep

neural networks on Telekine using three state-of-the-art convolutional neural

network architectures: ResNet [HZRS16], InceptionV3 [SVI+16], and DenseNet [HLWvdM17].

All models are trained using the ImageNet dataset (a substantial data set con-

sisting of 1.4 million training images). For ResNet, we use the 50-layer variant.

For DenseNet, we use the 121-layer variant. We evaluated all networks using

batches size of 64. Table 5.3 summarizes the input sizes that were used to

evaluate the three network architectures.

Figure 5.6 shows the performance of training three neural nets on

Telekine using the simulated testbed, normalized to the insecure baseline. The

bars break down Telekine’s overheads and match the descriptions from Sec-

tion 5.6.1. Both Telekine and the baseline use a single GPU. Table 5.4 shows

the same experiment on the geodist testbed; the results are similar to the

simulated testbed.

Machine learning inference. We evaluate neural network inference work-

loads for ResNet, InceptionV3, and DenseNet with Telekine. For inference,

latency is the priority for users, but throughput is still a priority for providers.

Batching inference can substantially improve throughput by fully utilizing

hardware capabilities and amortizing the overheads from other system com-

ponents [CWZ+17]. We evaluate the latency of inference with different batch

114

Batch ResNet InceptionV3 DenseNet
size Base Telekine Base Telekine Base Telekine

Simulated testbed
1 20 273 (13.7x) 29 259 (8.93x) 26 248 (9.54x)
8 42 270 (6.43x) 65 264 (4.06x) 47 241 (5.13x)

64 233 389 (1.67x) 368 559 (1.52x) 246 405 (1.65x)
256 988 1195 (1.21x) 1520 1806 (1.19x) 946 1163 (1.23x)

Geodist testbed
1 20 200 (10.0x) 31 205 (6.61x) 26 201 (7.73x)
8 69 241 (3.49x) 111 247 (2.23x) 84 209 (2.49x)

64 462 481 (1.04x) 637 685 (1.08x) 484 483 (1.00x)

Table 5.5: Latencies (in ms) of machine learning inference workloads with the
baseline system (Base in the Table) and Telekine.

sizes, ranging from 1 to 256. Our baseline is an insecure server with one local

GPU, communicating with them over the network. Table 5.5 shows the infer-

ence latency of three neural networks with different batch sizes. The overheads

with on the simulated testbed for batches of size 256 are 21%, 19%, and 23% for

ResNet, InceptionV3, and DenseNet, respectively, which are slightly improved

compared to the overheads we report for training (§5.6.2), although the train-

ing batch size was 64. With a batch size of 64, the overheads on the simulated

testbed inflate to 67%, 52%, and 65%. When we move to the geodist testbed,

the baseline’s performance suffers more than Telekine; at batches of size 64,

the standard deviation of our measurements exceeds the differences between

the mean Telekine and baseline runs. Clipper [CWZ+17] uses an adaptive

batch size to meet the application’s latency requirement, which Telekine could

adopt.

115

Application Normalized runtime
BFS (1 GPU) 1.18x
SSSP (1 GPU) 1.21x
Pagerank (1 GPU) 1.29x
BFS (2 GPUs) 1.38x
SSSP (2 GPUs) 1.41x

Table 5.6: Performance of Galois applications with Telekine.

5.6.3 Graph algorithms

Galois is a framework designed to accelerate parallel applications with

irregular data access patterns, such as graph algorithms [PP16]. We port

Galois’s GPU computation to use the HIP runtime instead of CUDA and

evaluate it on three graph algorithms: breadth-first search (BFS), PageRank,

and single-source shortest paths (SSSP). All measurements use the USA roads

graph dataset [DIM05]. Figure 5.6 shows the performance of these applications

on Telekine with one and two GPUs. The baseline is an unmodified system

with local GPU(s). Baseline performance for single GPU applications is BFS

54.1s, SSSP 74.6s, Pagerank 60.9s; for two GPUs: BFS 36.4s, SSSP 42.8s. For

the input distributed with Galois, two GPU Pagerank slows down, so we do

not evaluate it.

Telekine imposes moderate overheads on single-GPU Galois applica-

tions, adding latency to data transfer times. Galois implements each graph

algorithm as a single GPU kernel that is iteratively called until the algorithm

reaches termination. Multi-GPU applications exchange data between GPUs

through the host after each iteration. Telekine imposes higher overheads for

116

RTT (ms) ResNet InceptionV3 DenseNet
10 1.19x 1.10x 1.22x
20 1.29x 1.13x 1.37x
30 1.44x 1.16x 1.49x
40 1.53x 1.18x 1.66x
50 1.62x 1.30x 2.09x

Table 5.7: Normalized runtime of machine learning workloads with respect to
network round trip time (RTT).

multi-GPU workloads because of increased data movement over the network.

5.6.4 WAN latency sensitivity

Telekine assumes that the client communicates with the server over

a WAN. The greater distances crossed by WANs result in longer round trip

times (RTTs). The batching of commands that Telekine does for security also

makes it resilient to these increased RTTs, especially when the ratio of GPU

computation to communication is high. To demonstrate this, we increased the

RTT between our machines using netem [net19] and ran the machine learning

training benchmarks for different RTTs (Table 5.7). Overheads increase with

RTT. At 30ms, which we measured to be the RTT between the client and an

Amazon EC2 instance, the overhead for InceptionV3 is still only 16%.

117

Chapter 6

Related work

Using computational resources without trusting privileged software is

an active area of research. Here we provide a survey of related work to provide

context to work described in this dissertation. We start with a survey of

shielding systems relevant to both Telekine and Ryoan, then cover work that

is relevant to each system independently.

6.1 Shielding systems.

Shielding systems are designed to protect secret data while it is being

processed in an untrusted environment. Unlike other shielding systems, Ryoan

defends against the untrusted environment and also confines the application

so that it need not be trusted to maintain data secrecy. No shielding system

besides Telekine, to our knowledge, focusses on the communication issues that

arise when shielding GPU communication from an untrusted platform.

6.1.1 Software shielding.

Software shielding uses a hypervisor or compiler to preserve the pri-

vacy and integrity of applications executing on an untrusted platform. Over-

shadow [CGL+08], InkTag [HKD+13], and Sego [KDL+16] use a trusted hy-

118

pervisor to protect trusted applications from an untrusted operating system.

InkTag and Sego allow a trusted application to verify untrusted operating

system services (e.g., a file system) with help from the hypervisor. Virtual

Ghost [CDA14] uses a trusted compiler rather than a hypervisor for protec-

tion.

6.1.2 Hardware shielding.

Hardware shielding uses hardware primitives (such as SGX) to protect

applications from platform software. Haven [BPH15], Scone [ATG+16], and

Graphene-SGX [TPV17] allow a trusted program and its library operating

system to execute in an SGX enclave that protects them from attack by host

software. VC3 [SCF+15] secures trusted MapReduce using SGX.

Opaque [ZDB+17] uses carefully designed TEE code inside SGX en-

claves to prevent leakage through known SGX side channels (e.g., memory ac-

cess patterns). These techniques cannot be applied to code that is untrusted

since the secret data owner would have to verify that they are in use. Opaque

also deals with communication leakage but does not consider communication

with GPUs.

ARM TrustZone [Lim] is another commercially available hardware prim-

itive that protects computations from platform software. TrustZone provides a

single “secure world,” which allows code to execute in multiple privilege levels;

in contrast, SGX provides an unlimited number of enclaves, all of which exe-

cute at user-level. TrustZone does not currently encrypt memory, so it is less

119

resistant to physical attacks, but TrustZone can deliver page faults to privi-

leged code in the secure world, eliminating controlled channel attacks [XCP15].

Komodo [FBHP17] uses formally verified software to provide an enclave ab-

straction on top of TrustZone. In order to replace SGX with TrustZone, Ryoan

would require a management layer like Komodo.

Trusted Platform Modules Attempts to use late launch and Trusted Plat-

form Modules (TPMs) for user assurance (e.g., Flicker [MPP+08]) suffer from

poor usability due to the restricted execution environment required by the

TPM. Late-launched code has no access to the operating system and must

manage the bare machine. Code executing in an enclave can be more complex

than what is practical to execute in late launch.

Ironclad [HHL+14] addresses the limitations of the late launch environ-

ment with a (small) verified system stack that must be included with each

trusted binary. Ironclad is not backward compatible and requires users to

write verified code, placing a burden on the programmer.

MiniBox [LMN+14] uses a TPM and Native Client to protect an appli-

cation and the OS from each other. Unlike Ryoan, MiniBox uses Native Client

strictly to protect the OS and its secure hypervisor, not to prevent applications

from leaking sensitive data.

For all TPM-based systems, a computation’s data is visible on the

memory bus, where an unscrupulous administrator of the host platform can

120

steal it. SGX enclave data is encrypted before it travels across the memory

bus, preserving an enclave’s secrecy.

6.1.3 Cryptographic shielding.

Homomorphic encryption [Gen09,BV11] allows untrusted code to com-

pute directly on encrypted data with strong security guarantees. Unfortu-

nately, practical implementations of general-purpose homomorphic encryption

are not available, and current overheads are prohibitive.

Property-preserving encryption (for instance, order-preserving encryp-

tion [BCLO09]) can protect the secrecy of some computations [NKW15], and

some systems use these primitives [PRZB11, BPTG15, SLPR15]. However,

these systems have weaker security guarantees [GRS17], apply to limited sce-

narios, or have a significant performance overhead. In comparison, Ryoan’s

confinement does not require domain-specific knowledge about the applica-

tions. However, Ryoan does require stronger assumptions, i.e., that hardware

and the Ryoan runtime are correct.

6.2 Timing and termination channels

Both Ryoan and Telekine are concerned with limiting information leak-

age through timing and termination channels. Timing and termination chan-

nels are studied in previous work [KWH11,For10] in the context of information

flow control. In Ryoan, a module has to terminate for each unit of work, and

the processing-time channel can only be used once per unit; different units will

121

not interfere due to module reset. In Telekine the end-to-end execution time

of the application is leaked, but it is only leaked once and we found the end-

to-end time to be a much weaker signal than the execution time of individual

GPU kernels.

OS-level time protection. Recent extensions to seL4 [GYCH19] suggest

general OS-level techniques that prevent timing-based covert channels by elim-

inating the sharing of hardware resources that can form the basis of covert

channels. These techniques are not adequate to prevent malicious code from

modulating its behavior time purposefully leak secrets, although they do lower

their bandwidth. The techniques do not yet generalize to I/O-attached accel-

erators.

6.3 Work related to Ryoan: decentralized information
flow control

Decentralized information flow control (DIFC) allows untrusted appli-

cations to access secret data but prevents them from leaking data to unau-

thorized parties. However, most DIFC systems require that all trusted code

is deployed in a centralized platform or administrative domain under a trusted,

privileged reference monitor [KYB+07,VEK+07,PBR+14,ZBwKM06,LGV+09,

AGL+12]; similar enforcements have also been realized in a browser (COWL

[SYM+14]) and a mobile device (Maxoid [XW15]). Two exceptions are DStar

[ZBWM08] and Fabric [LGV+09], which do not have a centralized reference

122

monitor. However, although a DStar or Fabric user does not need to trust

all machines involved in the system, they must trust the machine on which

they process their data, which means a correct reference monitor (the OS or

runtime that supports DIFC) must be properly installed on the machine, and

that the machine’s administrator does not use root privilege to steal secret

data. Such trust is not required in Ryoan.

Systems that track information flow down to the hardware-gate level

[TOL+11, TLW+09, LKO+14, ZWSM15] form a basis for strong information

flow guarantees, and close timing and cache channels ignored by Ryoan. How-

ever, such hardware is not available and, as designed, does not include the

privacy and integrity guarantees provided by SGX.

6.4 Work related to Telekine: secure computation on
GPUs

Trusted Execution Environments on GPUs. HIX [JTK+19] extends

an SGX-like design with duplicate versions of the enclave memory protection

hardware to enable MMIO access from code running in an SGX enclave. This

enables HIX to guarantee that a single enclave has exclusive access to the

MMIO regions exported by a GPU, in principle, defeating a malicious OS that

wants to interpose or create its own mappings to them. While this design

provides stronger GPU isolation than current enclaves, it remains vulnerable

to side-channel attacks because communication is not data oblivious.

Graviton [VVB18] supports GPU TEEs based on secure contexts that

123

use the GPU command processor to protect memory from other concurrently

executing contexts. Similar to Telekine, Graviton secures communication us-

ing cryptographic techniques. Telekine can adopt many of Graviton’s clever

mechanisms for its TEE functionality (§3.3.2), such as restricting access to

GPU page tables without trusting the kernel driver. But Graviton does not

protect against side channels, which is Telekine’s primary mission.

The opportunity to provide stronger security for GPU-accelerated ap-

plications using TEEs and oblivious communication has been observed by oth-

ers [HJM+19].

Securing accelerators. SUD emulates a kernel environment in user space

to isolate malicious device drivers [BWZ10]. Previous work has explored tech-

niques to support trusted I/O paths, leveraging hypervisor support [WW17,

ZGNM12] or system management mode [KKJ+16]. Our work focuses on the

secure use of GPUs with untrusted system software and does not rely on sup-

port from the software at lower privilege layers. Border Control [OPHW15]

addresses security challenges for accelerator-based systems but focuses on pro-

tecting the system from a malicious accelerator rather than Telekine, which

protects CPU and GPU code from an untrusted platform.

GPU security and protection. Studies have analyzed GPU security prop-

erties and vulnerabilities [ZKR+17]. Frigo et al. [FGBR18] demonstrate tech-

niques that leverage integrated GPUs to accelerate side-channel attacks from

124

browser codes using JavaScript and WebGL. PixelVault [VAPI14] exploits

physical isolation between CPUs and GPUs to implement secure storage for

keys, though it was shown to be insecure [ZKR+17]. CUDA Leaks [PLV16]

shows techniques to exfiltrate data from the GPU to a malicious user. At-

tacks that take advantage of GPU memory reuse without re-initialization are

a common theme [LKKK14,ZDL+17,HLH+17]. Several systems have proposed

mechanisms that bring the GPU under tighter control of system software, ex-

ploring OS support [RCS+11,KLRI11,GST+11,MSS14], access to OS-managed

resources [SFKW13,SFKW14,KHH+14], hypervisor support [TDC14,SKYK14,

DS09, GGS+09, SCS09, GMAC10, VSB14] and GPU architectural support for

cross-domain protection [ALM+17,CFHR17,PHW14,PHB14,VBO+16].

Secure machine learning. Ohrimenko et al. describe an SGX-based sys-

tem for multi-party machine learning on an untrusted platform [OSF+16].

Their data-oblivious algorithm for convolutional neural networks explicitly

does not support state-of-the-art operations that are data-dependent (e.g.,

max pooling). Telekine can support any data-dependent operations but re-

quires a GPU TEE. Chiron [HSS+18] provides a framework for untrusted code

to design and train machine learning models in SGX. Telekine does not sup-

port untrusted code but does allow the use of GPUs, which Chiron excludes.

CQSTR [ZYC+16] lets a trusted platform operator confine untrusted machine

learning code so that it can be securely applied to user data. By contrast,

Telekine protects user data from an untrusted platform operator. MLcap-

125

sule [HZG+18] protects service provider secrets (machine learning model) and

client data by running machine learning algorithms in an SGX enclave but

does not suggest extensions to allow secure GPU acceleration.

Slalom [TB19] secures training of DNNs using a combination of TEEs

and local GPUs. Slalom’s guarantees are achieved by partitioning DNN train-

ing into linear layers using matrix multiplication, which is offloaded to a GPU,

the remaining operators, which execute on the CPU in a TEE such as SGX.

Matrix multiplication is verified and turned private using algorithmic tech-

niques [Fre77], enabling secure GPU offload without requiring GPU TEE sup-

port.

Recent work [DGBL+16,LJLA17] demonstrates how to efficiently apply

neural networks to encrypted data. As far as we know, today, there are no

practical techniques for training deep neural networks on encrypted data.

API remoting. API remoting [DPS+11,RPS+12,LC11,KSL+12,BBNLS10,

DIM+09, LNEAEG11, XBD+12] is an I/O virtualization technique that in-

terposes a high-level user-mode API. API calls are forwarded to a user-level

computing framework [SCS09] on a dedicated appliance VM [VSB14], or on

a remote server [DPS+11, KSL+12]. To our knowledge, Telekine is the first

system to use API remoting as a security technique.

126

Chapter 7

Conclusion

Hardware-protected TEEs, augmented with proper techniques from

system software, are a promising step towards secure computation on un-

trusted public clouds. While the techniques described here and TEEs them-

selves certainly have their limitations, their combination represents a point in

the space that achieves meaningful security at a reasonable cost. Both Ryoan

and Telekine achieve their security goals with reasonable overheads: gener-

ally under 50% for the workloads that we measured, but of course, the actual

overheads depend very much on the application and the data being processed.

Ryoan allows users to process data with software they do not trust, ex-

ecuting on a platform they do not control safely, thereby benefiting users, data

processing services, and computational platforms. Ryoan does this by confin-

ing untrusted application code via a trusted sandbox (provided by Google’s

NaCl) that is itself made tamperproof via hardware enclave-protected execu-

tion (provided by Intel’s SGX). Ryoan also defines and enforces an execution

model that allows mutually distrustful software nodes to exchange data with-

out disclosing secrets to each other or the platform provider. We implement

and evaluate a Ryoan prototype over various case studies of real-world appli-

cations. Our evaluation, based on real SGX hardware and simulation, shows

127

that Ryoan overhead is workload-dependent, 27% in the best case, and up to

419% in the worst case.

Telekine enables secure GPU acceleration in the cloud. Telekine pro-

tects in-cloud computation with a GPU TEE and application/library compu-

tation by placing it on a client machine. It secures their communication with

a novel GPU stream abstraction that ensures the execution is independent of

input data. Telekine allows GPU-accelerated workloads such as training ma-

chine learning models to leverage cloud GPUs while providing strong secrecy

and integrity guarantees that protect the user from the platform’s privileged

software and its administrators.

It is true that absolute performance is and will continue to be the most

important factor for the majority of public cloud users. Viewed through that

lens, any system with impacts performance in any amount is a non-starter.

But the work presented here achieves security that was only possible previously

with orders of magnitude of overhead (if you agree that our trust hardware is

valid). We hope that this massive reduction in overhead will open up public

clouds to more security-conscious users as they weigh public cloud deployments

against investing in their own hardware.

128

Bibliography

[23aa] 23andMe Compares Family History and Genetic Tests for Pre-

dicting Complex Disease Risk. http://mediacenter.23andme.

com/blog/23andme-compares-family-history-and-genetic-

tests-for-predicting-complex-disease-risk/. (Accessed:

September 2016).

[23ab] 23andMe. 23andMe. https://23andme.com/. Accessed:

June 20, 2020.

[AGL+12] Owen Arden, Michael D George, Jed Liu, K Vikram, Aslan

Askarov, and Andrew C Myers. Sharing mobile code securely

with information flow control. In Proceedings of the IEEE Sym-

posium on Security and Privacy, 2012.

[ALM+17] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata

Ghose, Jayneel Gandhi, Christopher J. Rossbach, and Onur

Mutlu. Mosaic: A GPU memory manager with application-

transparent support for multiple page sizes. In Proceedings of

the IEEE/ACM International Symposium on Microarchitecture,

MICRO’17. IEEE, 2017.

[Amaa] Amazon. Amazon EC2 P3 Instances. https://aws.amazon.

129

http://mediacenter.23andme.com/blog/23andme-compares-family-history-and-genetic-tests-for-predicting-complex-disease-risk/
http://mediacenter.23andme.com/blog/23andme-compares-family-history-and-genetic-tests-for-predicting-complex-disease-risk/
http://mediacenter.23andme.com/blog/23andme-compares-family-history-and-genetic-tests-for-predicting-complex-disease-risk/
https://23andme.com/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/

com/ec2/instance-types/p3/. (Accessed: September 2018).

[Amab] Amazon Web Services. Amazon Web Services. https://aws.

amazon.com/. Accessed: June 20, 2020.

[AMD] AMD. ROCm, a New Era in Open GPU Computing. https://

rocm.github.io/index.html. (Accessed: February 12, 2020).

[aml] Amazon Machine Learning. https://aws.amazon.com/machine-

learning/. (Accessed: September 2017).

[ANB+18] Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and

Deian Stefan. Towards Verified, Constant-time Floating Point

Operations. In Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS ’18,

pages 1369–1382, 2018.

[ATG+16] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth,

Andre Martin, Christian Priebe, Joshua Lind, Divya Muthuku-

maran, Dan O’Keeffe, Mark L. Stillwell, David Goltzsche, David

Eyers, Rüdiger Kapitza, Peter Pietzuch, and Christof Fetzer.

SCONE: Secure Linux Containers with Intel SGX. In Proceed-

ings of the 12th USENIX Conference on Operating Systems De-

sign and Implementation, OSDI’16. USENIX Association, 2016.

[aws] User guide for Windows instances. https://docs.aws.amazon.

130

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/
https://aws.amazon.com/
https://rocm.github.io/index.html
https://rocm.github.io/index.html
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/elastic-gpus.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/elastic-gpus.html

com/AWSEC2/latest/WindowsGuide/elastic-gpus.html. (Ac-

cessed: April 2019).

[AZM10] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predic-

tive Black-box Mitigation of Timing Channels. In Proceedings

of the 17th ACM Conference on Computer and Communica-

tions Security, CCS ’10, pages 297–307, New York, NY, USA,

2010. ACM.

[azu14] Azure: Microsoft’s Cloud Platform, 2014. http://www.azure.

microsoft.com.

[BBNLS10] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A package for

OpenCL based heterogeneous computing on clusters with many

GPU devices. In 2019 IEEE International Conference on Clus-

ter Computing Workshops and Posters, CLUSTER WORK-

SHOPS, September 2010.

[BCD+18] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto,

and Ahmad-Reza Sadeghi. The guard’s dilemma: Efficient

code-reuse attacks against intel SGX. In 27th USENIX Secu-

rity Symposium (USENIX Security 18), pages 1213–1227, Bal-

timore, MD, August 2018. USENIX Association.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam

O’neill. Order-preserving symmetric encryption. In Annual In-

131

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/elastic-gpus.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/elastic-gpus.html
http://www.azure.microsoft.com
http://www.azure.microsoft.com

ternational Conference on the Theory and Applications of Cryp-

tographic Techniques (EuroCrypt), 2009.

[Bit] Bitfusion: The Elastic AI Infrastructure for Multi-Cloud. https:

//bitfusion.io. (Accessed: February 12, 2020).

[Bot] Lèon Bottou. Stochastic Gradient SVM. http://leon.bottou.

org/projects/sgd#stochastic_gradient_svm. (Accessed: Septem-

ber, 2016).

[BPH15] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding

applications from an untrusted cloud with haven. ACM Trans.

Comput. Syst., 33(3):8:1–8:26, August 2015.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Gold-

wasser. Machine Learning Classification over Encrypted Data.

In Network and Distributed System Security Symposium (NDSS),

2015.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomor-

phic encryption from ring-LWE and security for key dependent

messages. In Advances in Cryptology (CRYPTO). 2011.

[BWZ10] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating Ma-

licious Device Drivers in Linux. In Proceedings of the 2010

USENIX Annual Technical Conference, USENIXATC’10. USENIX

Association, 2010.

132

https://bitfusion.io
https://bitfusion.io
http://leon.bottou.org/projects/sgd#stochastic_gradient_svm
http://leon.bottou.org/projects/sgd#stochastic_gradient_svm

[CCX+18] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,

Zhiqiang Lin, and Ten H. Lai. SgxPectre Attacks: Leaking

Enclave Secrets via Speculative Execution. CoRR, February

2018. http://arxiv.org/abs/1802.09085.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX Explained.

2016.

[CDA14] John Criswell, Nathan Dautenhahn, and Vikram Adve. Vir-

tual Ghost: Protecting Applications from Hostile Operating

Systems. In International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS),

2014.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE:

Unassisted and Automatic Generation of High-Coverage Tests

for Complex Systems Programs. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2008.

[CFHR17] Jason Cong, Zhenman Fang, Yuchen Hao, and Glenn Reinman.

Supporting Address Translation for Accelerator-Centric Archi-

tectures. In IEEE International Symposium on High Perfor-

mance Computer Architecture, HPCA. IEEE, 2017.

[CGL+08] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Sub-

rahmanyam, Carl A. Waldspurger, Dan Boneh, Jeffery Dwoskin,

133

http://arxiv.org/abs/1802.09085

and Dan R. K. Ports. Overshadow: A Virtualization-Based

Approach to Retrofitting Protection in Commodity Operating

Systems. In International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS),

2008.

[cla] Clarifai. https://www.clarifai.com. (Accessed: September

2016).

[CLD16] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-

tum: Minimal hardware extensions for strong software isola-

tion. In Proceedings of the 25th USENIX Security Symposium

(USENIX Security 16), pages 857–874, Berkeley, CA, USA,

2016. USENIX Association.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Min-

jie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng

Zhang. MXNet: A Flexible and Efficient Machine Learn-

ing Library for Heterogeneous Distributed Systems. CoRR,

abs/1512.01274, 2015. http://arxiv.org/abs/1512.01274.

[CLL+17] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Min-

jie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng

Zhang. Acoustic Cryptanalysis. Journal of Cryptology, 30,

April 2017.

134

https://www.clarifai.com
http://arxiv.org/abs/1512.01274

[clo] cloc: Count Lines of Code. https://github.com/AlDanial/

cloc. (Accessed: February 12, 2020).

[CP17] Richard Cziva and Dimitrios P Pezaros. On the Latency Bene-

fits of Edge NFV. In ACM/IEEE Symposium on Architectures

for Networking and Communications Systems, ANCS. IEEE,

2017.

[CPG+04] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and

Mendel Rosenblum. Understanding data lifetime via whole

system simulation. In USENIX Security Symposium, 2004.

[CS13] Stephen Checkoway and Hovav Shacham. Iago Attacks: Why

The System Call API Is a Bad Untrusted RPC Interface. In

International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), number

CS2012-0984, July 2013.

[CVDBDS09] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and

Bjorn De Sutter. Practical mitigations for timing-based side-

channel attacks on modern x86 processors. In Proceedings of

the IEEE Symposium on Security and Privacy, 2009.

[CWZ+17] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin,

Joseph E. Gonzalez, and Ion Stoica. Clipper: A Low-latency

Online Prediction Serving System. In Proceedings of the 14th

135

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

USENIX Conference on Networked Systems Design and Imple-

mentation, NSDI’17. USENIX Association, 2017.

[CZRZ17] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yin-

qian Zhang. Detecting privileged side-channel attacks in shielded

execution with Déjá Vu. In ACM Symposium on Information,

Computer and Communications Security (AsiaCCS), 2017.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei. ImageNet: A large-scale hierarchical image database.

In The Conference on Computer Vision and Pattern Recogni-

tion, CVPR. IEEE, 2009.

[DGBL+16] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,

Michael Naehrig, and John Wernsing. CryptoNets: Applying

Neural Networks to Encrypted Data with High Throughput and

Accuracy. In International Conference on Machine Learning,

2016.

[DIM05] DIMACS. 9th DIMACS Implementation Challenge - Short-

est Paths. http://users.diag.uniroma1.it/challenge9/

download.shtml, 2005. (Accessed: February 12, 2020).

[DIM+09] José Duato, Francisco D Igual, Rafael Mayo, Antonio J Peña,

Enrique S Quintana-Ort́ı, and Federico Silla. An efficient imple-

mentation of GPU virtualization in high performance clusters.

136

http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml

In European Conference on Parallel Processing, Euro-Par’09,

pages 385–394, Berlin, Heidelberg, 2009. Springer, Springer-

Verlag.

[dis] The DisGeNET Database. http://www.disgenet.org/ds/

DisGeNET/files/current/DisGeNET_2016.db.gz. (Accessed:

February, 2016).

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:

The second-generation onion router. In Proceedings of the 13th

USENIX Security Symposium, USENIX Security 04, pages 21–

21, Berkeley, CA, USA, 2004. USENIX Association.

[DPS+10] J. Duato, AJ. Pena, F. Silla, R. Mayo, and E.S. Quintana-Orti.

rCUDA: Reducing the Number of GPU-Based Accelerators in

High Performance Clusters. In 2010 International Conference

on High Performance Computing Systems, HPCS, 2010.

[DPS+11] Jose Duato, Antonio J. Pena, Federico Silla, Juan C. Fernan-

dez, Rafael Mayo, and Enrique S. Quintana-Orti. Enabling

CUDA acceleration within virtual machines using rCUDA. In

Proceedings of the 2011 18th International Conference on High

Performance Computing, HIPC ’11, pages 1–10, Washington,

DC, USA, 2011. IEEE Computer Society.

[DS09] Micah Dowty and Jeremy Sugerman. GPU virtualization on

137

http://www.disgenet.org/ds/DisGeNET/files/current/DisGeNET_2016.db.gz
http://www.disgenet.org/ds/DisGeNET/files/current/DisGeNET_2016.db.gz

VMware’s hosted I/O architecture. ACM SIGOPS Operating

Systems Review, 43(3):73–82, 2009.

[Dwo07] Morris Dworkin. NIST Special Publication 800-38D: Recom-

mendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC. http://csrc.nist.gov/publications/

nistpubs/800-38D/SP-800-38D.pdf, 2007. (Accessed: Febru-

ary 12, 2020).

[ema] The Radicati Group, Inc: Email Statistics Report 2009-20013

(summary). http://www.radicati.com/wp/wp-content/uploads/

2009/05/email-stats-report-exec-summary.pdf. (Accessed:

September 2016).

[FBHP17] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and

Bryan Parno. Komodo: Using Verification to Disentangle

Secure-enclave Hardware from Software. In Proceedings of the

26th Symposium on Operating Systems Principles, SOSP ’17,

pages 287–305, New York, NY, USA, 2017. ACM.

[FGBR18] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.

Grand Pwning Unit: Accelerating Microarchitectural Attacks

with the GPU. In IEEE Symposium on Security and Privacy,

May 2018.

[Fol16] Denis Foley. Ultra-Performance Pascal GPU and NVLink In-

terconnect. In HotChips, 2016.

138

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2009/05/email-stats-report-exec-summary.pdf

[For10] Bryan Ford. Plugging Side-Channel Leaks with Timing Infor-

mation Flow Control. In USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud), 2010.

[Fre77] Rusins Freivalds. Probabilistic Machines Can Use Less Run-

ning Time. In IFIP Congress, pages 839–842, 1977.

[FRK02] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss,

Futexes and Furwocks: Fast Userlevel Locking in Linux. In

Ottawa Linux Symposium, 2002.

[FWZ+16] Andrew Ferraiuolo, Yao Wang, Danfeng Zhang, Andrew C. My-

ers, and G. Edward Suh. Lattice Priority Scheduling: Low-

Overhead Timing-Channel Protection for a Shared Memory Con-

troller. In IEEE International Symposium on High-Performance

Computer Architecture (HPCA), 2016.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD

thesis, Stanford University, 2009. https://crypto.stanford.

edu/craig.

[GESM17] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo

Müller. Cache Attacks on Intel SGX. In Proceedings of the 10th

European Workshop on Systems Security, EuroSec’17, 2017.

[GGKSC13] Scott Grauer-Gray, William Killian, Robert Searles, and John

Cavazos. Accelerating Financial Applications on the GPU. In

139

https://crypto.stanford.edu/craig
https://crypto.stanford.edu/craig

Proceedings of the 6th Workshop on General Purpose Processor

Using Graphics Processing Units, GPGPU-6, pages 127–136,

New York, NY, USA, 2013. ACM.

[GGS+09] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvard-

han Kharche, Niraj Tolia, Vanish Talwar, and Parthasarathy

Ranganathan. GViM: GPU-accelerated virtual machines. In

Proceedings of the 3rd ACM Workshop on System-level Virtual-

ization for High Performance Computing, pages 17–24. ACM,

2009.

[GMAC10] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and Giuseppe

Coviello. A GPGPU transparent virtualization component for

high performance computing clouds. In European Conference

on Parallel Processing, pages 379–391. Springer, Springer, 2010.

[Goo] Google. Google Cloud. https://cloud.google.com/. Ac-

cessed: June, 2020.

[GRS17] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. Why

your encrypted database is not secure. In Proceedings of the

16th Workshop on Hot Topics in Operating Systems, HotOS

’17, pages 162–168, New York, NY, USA, 2017. ACM.

[GST+11] Vishakha Gupta, Karsten Schwan, Niraj Tolia, Vanish Talwar,

and Parthasarathy Ranganathan. Pegasus: Coordinated Schedul-

ing for Virtualized Accelerator-based Systems. In Proceedings

140

https://cloud.google.com/

of the 2011 USENIX Conference on USENIX Annual Technical

Conference, USENIXATC’11, pages 3–3. USENIX Association,

2011.

[GYCH19] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time

Protection: The Missing OS Abstraction. In European Confer-

ence in Computer Systems, EuroSys, 2019.

[Hem17] Nicole Hemsoth. Medical Imaging Drives GPU Accelerated

Deep Learning Developments. https://www.nextplatform.

com/2017/11/27/medical-imaging-drives-gpu-accelerated-

deep-learning-developments/, November 2017. (Accessed:

February 12, 2020).

[HHL+14] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan,

Bryan Parno, Danfeng Zhang, and Brian Zill. Ironclad Apps:

End-to-End Security via Automated Full-System Verification.

In USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI), 2014.

[HIP] HIP: Convert CUDA to Portable C++ Code. https://github.

com/ROCm-Developer-Tools/HIP. (Accessed: February 12,

2020).

[HJM+19] Tyler Hunt, Zhipeng Jia, Vance Miller, Christopher J. Ross-

bach, and Emmett Witchel. Isolation and Beyond: Challenges

141

https://www.nextplatform.com/2017/11/27/medical-imaging-drives-gpu-accelerated-deep-learning-developments/
https://www.nextplatform.com/2017/11/27/medical-imaging-drives-gpu-accelerated-deep-learning-developments/
https://www.nextplatform.com/2017/11/27/medical-imaging-drives-gpu-accelerated-deep-learning-developments/
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP

for System Security. In Proceedings of the Workshop on Hot

Topics in Operating Systems, HotOS ’19, pages 96–104, New

York, NY, USA, 2019. ACM.

[HJM+20] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu,

Christopher J. Rossbach, and Emmett Witchel. Telekine: Se-

cure Computing with Cloud GPUs. In 17th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI

20), pages 817–833, Santa Clara, CA, February 2020. USENIX

Association.

[HKD+13] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z.

Lee, and Emmett Witchel. InkTag: Secure Applications on an

Untrusted Operating System. In International Conference on

Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS), 2013.

[HLH+17] Ari B. Hayes, Lingda Li, Mohammad Hedayati, Jiahuan He,

Eddy Z. Zhang, and Kai Shen. GPU Taint Tracking. In

Proceedings of the 2017 USENIX Conference on Usenix An-

nual Technical Conference, USENIX ATC ’17, pages 209–220.

USENIX Association, 2017.

[HLWvdM17] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens

van der Maaten. Densely connected convolutional networks.

142

In Proceedings of the IEEE conference on computer vision and

pattern recognition, volume 1, page 3, 2017.

[HSS+18] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov,

and Emmett Witchel. Chiron: Privacy-preserving Machine

Learning as a Service. CoRR, abs/1803.05961, 2018. http:

//arxiv.org/abs/1803.05961.

[HZG+18] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem,

Max Augustin, Michael Backes, and Mario Fritz. MLCapsule:

Guarded Offline Deployment of Machine Learning as a Service.

CoRR, abs/1808.00590, 2018. http://arxiv.org/abs/1808.

00590.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pages 770–778, 2016.

[HZX+16] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and

Emmett Witchel. Ryoan: A Distributed Sandbox for Un-

trusted Computation on Secret Data. In Proceedings of the

12th USENIX Conference on Operating Systems Design and Im-

plementation, OSDI’16, pages 533–549. USENIX Association,

2016.

143

http://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1808.00590
http://arxiv.org/abs/1808.00590

[HZX+18] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Em-

mett Witchel. Ryoan: A distributed sandbox for untrusted

computation on secret data. ACM Trans. Comput. Syst.,

35(4):13:1–13:32, December 2018.

[ibm] IBM Visual Recognition service. http://www.ibm.com/smarterplanet/

us/en/ibmwatson/developercloud/visual-recognition.html.

(Accessed: September 2016).

[Int] Intuit. TurboTax. https://turbotax.com/. Accessed: June

20, 2020.

[Int14] Intel(R) Software Guard Extensions Programming Reference.

https://software.intel.com/sites/default/files/managed/

48/88/329298-002.pdf, 2014. (Accessed: February 12, 2020).

[JDK+16] Prerit Jain, Soham Desai, Seongmin Kim, Ming-Wei Shih, Jae-

Hyuk Lee, Changho Choi, Youjung Shin, Taesoo Kim, Brent Byunghoon

Kang, and Dongsu Han. OpenSGX: An Open Platform for

SGX Research. In Network and Distributed System Security

Symposium (NDSS), San Diego, CA, February 2016.

[JFK16] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A complete key

recovery timing attack on a GPU. In IEEE International Sym-

posium on High-Performance Computer Architecture (HPCA),

2016.

144

http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/visual-recognition.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/visual-recognition.html
https://turbotax.com/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[JFK17] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A Novel Side-

Channel Timing Attack on GPUs. In Proceedings of the on

Great Lakes Symposium on VLSI 2017, GLSVLSI ’17, pages

167–172, New York, NY, USA, 2017. ACM.

[JLLK17] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim.

Sgx-bomb: Locking down the processor via rowhammer attack.

In Proceedings of the 2nd Workshop on System Software for

Trusted Execution, SysTEX’17, New York, NY, USA, 2017. As-

sociation for Computing Machinery.

[Joh17] Simon Johnson. Intel SGX and Side-Channels. https://

software.intel.com/en-us/articles/intel-sgx-and-side-

channels, March 2017. (Accessed: February 12, 2020).

[JTK+19] Insu Jang, Adrian Tang, Taehoo Kim, Simha Sethumadhavan,

and Jaehyuk Huh. Heterogeneous Isolated Execution for Com-

modity GPUs. In Proceedings of the Eighteenth International

Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS’19, 2019.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.

Flipping bits in memory without accessing them: An experi-

mental study of dram disturbance errors. SIGARCH Comput.

Archit. News, 42(3):361–372, June 2014.

145

https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels

[KDL+16] Youngjin Kwon, Alan Dunn, Michael Lee, Owen Hofmann, Yuanzhong

Xu, and Emmett Witchel. Sego: Pervasive Trusted Metadata

for Efficiently Verified Untrusted System Services. In Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2016.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting Specu-

lative Execution. CoRR, abs/1801.01203, January 2018. http:

//arxiv.org/abs/1801.01203.

[KHH+14] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett

Witchel, Amir Wated, and Mark Silberstein. GPUnet: Net-

working Abstractions for GPU Programs. In Proceedings of the

11th USENIX Conference on Operating Systems Design and Im-

plementation, OSDI’14, pages 201–216. USENIX Association,

2014.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differen-

tial Power Analysis. In Proceedings of the 19th Annual In-

ternational Cryptology Conference on Advances in Cryptology,

CRYPTO ’99, pages 388–397, Berlin, Heidelberg, 1999. Springer-

Verlag.

146

http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203

[KKJ+16] Yonggon Kim, Ohmin Kwon, Jinsoo Jang, Seongwook Jin, Hyeong-

boo Baek, Brent Byunghoon Kang, and Hyunsoo Yoon. On-

demand bootstrapping mechanism for isolated cryptographic

operations on commodity accelerators. 62, 7 2016.

[KLRI11] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yu-

taka Ishikawa. TimeGraph: GPU scheduling for real-time

multi-tasking environments. In Proc. USENIX ATC, USENIX-

ATC’11, pages 17–30. USENIX Association, 2011.

[KMPS11] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam,

and Dawn Song. DTA++: Dynamic Taint Analysis with Tar-

geted Control-Flow Propagation. In NDSS, 2011.

[KPMR12] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTH-

MEM: system-level protection against cache-based side channel

attacks in the cloud. In USENIX Security Symposium, 2012.

[KSL+12] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: an

OpenCL framework for heterogeneous CPU/GPU clusters. In

Proceedings of the 26th ACM international conference on Su-

percomputing, pages 341–352. ACM, 2012.

[KWH11] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing-

and termination-sensitive secure information flow: Exploring a

new approach. In Proceedings of the IEEE Symposium on Se-

curity and Privacy, 2011.

147

[KYB+07] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer,

M. Frans, Kaashoek Eddie, and Kohler Robert Morris. Infor-

mation flow control for standard OS abstractions. In ACM

Symposium on Operating System Principles (SOSP), 2007.

[Lam73] Butler W. Lampson. A Note on the Confinement Problem.

Communications of the ACM(CACM), 16(10), October 1973.

[LC11] Tyng-Yeu Liang and Yu-Wei Chang. GridCuda: A Grid-

Enabled CUDA Programming Toolkit. In Advanced Informa-

tion Networking and Applications (WAINA), 2011 IEEE Work-

shops of International Conference on, pages 141–146, March

2011.

[LCW13] Anyi Liu, Jim Chen, and Harry Wechsler. Real-time covert

timing channel detection in networked virtual environments. In

International Conference on Digital Forensics, 2013.

[LGV+09] Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lu-

cas Waye, and Andrew C Myers. Fabric: A platform for secure

distributed computation and storage. In ACM Symposium on

Operating System Principles (SOSP), 2009.

[LHH+15] Chang Liu, Michael Hicks, Austin Harris, Mohit Tiwari, Martin

Maas, and Elaine Shi. GhostRider: A Hardware-Software Sys-

tem for Memory Timerace Oblivious Computation. In Inter-

148

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2015.

[lib] libsodium: A modern and easy-to-use crypto library. https:

//github.com/jedisct1/libsodium. (Accessed: September

2016).

[Lim] Arm Limited. Introducing Arm TrustZone. https://developer.

arm.com/technologies/trustzone. (Accessed: February 12,

2020).

[LJLA17] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural

Network Predictions via MiniONN transformations. Cryptol-

ogy ePrint Archive, Report 2017/452, 2017. http://eprint.

iacr.org/2017/452.

[LKC+18] Dayeol Lee, David Kohlbrenner, Kevin Cheang, Cameron Ras-

mussen, Kevin Laeufer, Ian Fang, Akash Khosla an Chia-Che Tsai,

Sanjit Seshia, Dawn Song, and Krste Asanovic. Keystone En-

clave: An Open-Source Secure Enclave for RISC-V. https://

keystone-enclave.org/files/keystone-risc-v-summit.pdf,

2018. (Accessed: February 12, 2020).

[LKKK14] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim.

Stealing Webpages Rendered on Your Browser by Exploiting

149

https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://developer.arm.com/technologies/trustzone
https://developer.arm.com/technologies/trustzone
http://eprint.iacr.org/2017/452
http://eprint.iacr.org/2017/452
https://keystone-enclave.org/files/keystone-risc-v-summit.pdf
https://keystone-enclave.org/files/keystone-risc-v-summit.pdf

GPU Vulnerabilities. In Proceedings of the 2014 IEEE Sympo-

sium on Security and Privacy, SP ’14, pages 19–33, Washington,

DC, USA, 2014. IEEE Computer Society.

[LKO+14] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vas-

anth Ram Rajarathinam, Ryan Kastner, Timothy Sherwood,

Ben Hardekopf, and Frederic T. Chong. Sapper: A language

for hardware-level security policy enforcement. In Proceedings

of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS

’14, pages 97–112, New York, NY, USA, 2014. ACM.

[LKS+20] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović,

and Dawn Song. Keystone: An Open Framework for Architect-

ing Trusted Execution Environments. In Proceedings of the Fif-

teenth European Conference on Computer Systems, EuroSys’20,

New York, NY, USA, 2020. Association for Computing Machin-

ery.

[LMN+14] Yanlin Li, Jonathan McCune, James Newsome, Adrian Per-

rig, Brandon Baker, and Will Drewry. MiniBox: A Two-Way

Sandbox for x86 Native Code. In USENIX Anual Technical

Conference, number CMU-CyLab-14-001, 2014.

[LNEAEG11] Teng Li, Vikram K Narayana, Esam El-Araby, and Tarek El-

Ghazawi. GPU resource sharing and virtualization on high per-

150

formance computing systems. In Parallel Processing (ICPP),

2011 International Conference on, pages 733–742. IEEE, 2011.

[LSG+17] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-

soon Kim, and Marcus Peinado. Inferring Fine-grained Con-

trol Flow Inside SGX Enclaves with Branch Shadowing. In

USENIX Security Symposium, 2017.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Stefan Mangard, Paul Kocher, Dkaniel Genkin,

Yuval Yarom, and Mike Hamburg. Meltdown. CoRR, abs/1801.01207,

January 2018. http://arxiv.org/abs/1801.01207.

[LWL15] Fangfei Liu, Hao Wu, and Ruby B. Lee. Can randomized map-

ping secure instruction caches from side-channel attacks? In

Hardware and Architectural Support for Security and Privacy,

2015.

[MAA+16] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi,

Simon Johnson, Rebekah Leslie-Hurd, and Carlos Rozas. Intel

Software Guard Extensions (Intel SGX) Support for Dynamic

Memory Management Inside an Enclave. In Hardware and

Architectural Support for Security and Privacy, 2016.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model

for information flow control. In ACM Symposium on Operating

System Principles (SOSP), 1997.

151

http://arxiv.org/abs/1801.01207

[mos] Moses. http://www.statmt.org/moses/. (Accessed: Septem-

ber 2016).

[MP] Jay Mahadeokar and Gerry Pesavento. Open Sourcing a Deep

Learning Solution for Detecting NSFW Images. https://

yahooeng.tumblr.com/post/151148689421/open-sourcing-a-

deep-learning-solution-for. (Accessed: September 2016).

[MPP+08] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K.

Reiter, and Hiroshi Isozaki. Flicker: An Execution Infrastruc-

ture for TCB Minimization. In ACM European Conference in

Computer Systems (EuroSys), April 2008.

[MRR+15] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan,

Christian Müller, Lothar Thiele, and Srdjan Capkun. Thermal

Covert Channels on Multi-core Platforms. In USENIX Security

Symposium, 2015.

[MSS14] Konstantinos Menychtas, Kai Shen, and Michael L. Scott. Dis-

engaged Scheduling for Fair, Protected Access to Fast Com-

putational Accelerators. In Proceedings of the 19th Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’14, pages 301–316,

New York, NY, USA, 2014. ACM.

[MV05] David A. McGrew and John Viega. The Galois/Counter mode

of operation (GCM), 2005.

152

http://www.statmt.org/moses/
https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for
https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for
https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for

[nac] Implementation and safety of NaCl SFI for x86-64. https://

groups.google.com/forum/#!topic/native-client-discuss/

C-wXFdR2lf8. (Accessed: September 2016).

[net19] netem. https://wiki.linuxfoundation.org/networking/

netem, 2019. (Accessed: February 12, 2020).

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V. Wright. In-

ference attacks on property-preserving encrypted databases. In

Proceedings of the 22Nd ACM SIGSAC Conference on Com-

puter and Communications Security, CCS ’15, pages 644–655,

New York, NY, USA, 2015. ACM.

[NNQAG18] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael

Abu-Ghazaleh. Rendered Insecure: GPU Side Channel Attacks

Are Practical. In ACM Conference on Computer and Commu-

nications Security (CCS), 2018.

[NVIa] NVIDIA. CUDA Zone. https://developer.nvidia.com/

cuda-zone. (Accessed: February 12, 2020).

[NVIb] NVIDIA. Driving Innovation: Building AI-Powered Self-Driving

Cars. https://www.nvidia.com/en-us/self-driving-cars/.

(Accessed: February 12, 2020).

[NVIc] NVIDIA. RISC-V Story. https://riscv.org/wp-content/

153

https://groups.google.com/forum/#!topic/native-client-discuss/C-wXFdR2lf8
https://groups.google.com/forum/#!topic/native-client-discuss/C-wXFdR2lf8
https://groups.google.com/forum/#!topic/native-client-discuss/C-wXFdR2lf8
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/en-us/self-driving-cars/
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf

uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf. (Ac-

cessed: February 12, 2020).

[NVI16] NVIDIA. GPUs and DSLs for Life Insurance Modeling. https:

//devblogs.nvidia.com/gpus-dsls-life-insurance-modeling/,

March 2016. (Accessed: February 12, 2020).

[NVI17a] NVIDIA. Microsoft Sets New Speech Recognition Record. https:

//news.developer.nvidia.com/microsoft-sets-new-speech-

recognition-record/, August 2017. (Accessed: February 12,

2020).

[NVI17b] NVIDIA. NVIDIA CUDA Toolkit Documentation. http://

docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.

html, 2017. (Accessed: February 12, 2020).

[NVI18] NVIDIA. CUDA Toolkit Documentation (Streams). https://

docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

streams, 2018. (Accessed: February 12, 2020).

[OMA+18] Dan O’Keeffe, Divya Muthukumaran, Pierre-Louis Aublin, Flo-

rian Kelbert, Christian Priebe, Josh Lind, Huanzhou Zhu, and

Peter Pietzuch. spectre-attack-sgx, 2018.

[OPHW15] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood.

Border Control: Sandboxing Accelerators. In Proceedings of the

154

https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://devblogs.nvidia.com/gpus-dsls-life-insurance-modeling/
https://devblogs.nvidia.com/gpus-dsls-life-insurance-modeling/
https://news.developer.nvidia.com/microsoft-sets-new-speech-recognition-record/
https://news.developer.nvidia.com/microsoft-sets-new-speech-recognition-record/
https://news.developer.nvidia.com/microsoft-sets-new-speech-recognition-record/
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams

48th International Symposium on Microarchitecture, MICRO-

48, pages 470–481, New York, NY, USA, 2015. ACM.

[OSF+16] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Sebastian Nowozin

Aastha Mehta, Kapil Vaswani, and Manuel Costa. Oblivi-

ous Multi-Party Machine Learning on Trusted Processors. In

USENIX Security Symposium, 2016.

[OTK+18] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silber-

stein, and Christof Fetzer. Varys: Protecting SGX enclaves

from practical side-channel attacks. In Proceedings of the 2018

USENIX Conference on Usenix Annual Technical Conference,

USENIX ATC ’18, pages 227–240. USENIX Association, 2018.

[PBR+14] Donald E. Porter, Michael D. Bond, Indrajit Roy, Kathryn S.

McKinley, and Emmett Witchel. Practical Fine-Grained Infor-

mation Flow Control Using Laminar. ACM Transactions on

Programming Languages and Systems (TOPLAS), 37(1), 2014.

[PHB14] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Ar-

chitectural Support for Address Translation on GPUs: Design-

ing Memory Management Units for CPU/GPUs with Unified

Address Spaces. In Proceedings of the Eighteenth Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS’14, 2014.

155

[PHW14] Jonathan Power, Mark D Hill, and David A Wood. Supporting

x86-64 Address Translation for 100s of GPU Lanes. In HPCA,

2014.

[Pix] Pixlr. Pixlr - Photo editor online. https://pixlr.com/. Ac-

cessed: June 20, 2020.

[PLV16] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. CUDA

Leaks: A Detailed Hack for CUDA and a (Partial) Fix. ACM

Trans. Embed. Comput. Syst., 15(1):15:1–15:25, January 2016.

[PP16] Sreepathi Pai and Keshav Pingali. A Compiler for Throughput

Optimization of Graph Algorithms on GPUs. In Proceedings of

the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2016, pages 1–19, New York, NY, USA, 2016. ACM.

[PRZB11] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and

Hari Balakrishnan. CryptDB: protecting confidentiality with

encrypted query processing. In ACM Symposium on Operating

System Principles (SOSP), 2011.

[PS19] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone:

A Comprehensive Survey. ACM Computing Surveys, 51(6),

2019.

156

https://pixlr.com/

[qem] QEMU: open source processor emulator. http://wiki.qemu.

org/Main_Page. (Accessed: September 2016).

[QS16] R. Qiao and M. Seaborn. A new approach for rowhammer

attacks. In 2016 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), pages 161–166, 2016.

[RCS+11] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi

Ray, and Emmett Witchel. PTask: Operating System Abstrac-

tions to Manage GPUs as Compute Devices. In Symposium on

Operating Systems Principles, SOSP’11, pages 233–248. ACM,

2011.

[RFK+15] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Ste-

fanov, Elaine Shi, Marten van Dijk, and Srinivas Devadas. Con-

stants Count: Practical Improvements to Oblivious RAM. In

USENIX Security Symposium, 2015.

[RLT15] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing

digital side-channels through obfuscated execution. In USENIX

Security Symposium, 2015.

[RPS+12] C. Reano, A. J. Pena, F. Silla, J. Duato, R. Mayo, and E. S.

Quintana-Orti. CU2rCU: Towards the complete rCUDA re-

mote GPU virtualization and sharing solution. 20th Annual

International Conference on High Performance Computing, 0:1–

10, 2012.

157

http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page

[rtx18] GeForce RTX 2080 Ti, 2018. https://www.nvidia.com/en-

us/geforce/graphics-cards/rtx-2080-ti/.

[SCF+15] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkant-

sidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russi-

novich. VC3: Trustworthy Data Analytics in the Cloud using

SGX. In Proceedings of the IEEE Symposium on Security and

Privacy, 2015.

[SCS09] Lin Shi, Hao Chen, and Jianhua Sun. vCUDA: GPU accel-

erated high performance computing in virtual machines. In

Parallel Distributed Processing, 2009. IPDPS 2009. IEEE In-

ternational Symposium on, May 2009.

[SFB+15] Erik Smistad, Thomas L. Falch, Mohammadmehdi Bozorgi, Anne C.

Elster, and Frank Lindseth. Medical image segmentation on

GPUs - A comprehensive review. Medical Image Analysis,

20(1):1–18, 2015.

[SFKW13] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel.

GPUfs: Integrating a File System with GPUs. In Proceedings of

the Eighteenth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (AS-

PLOS), volume 32, March 2013.

[SFKW14] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel.

158

https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/

GPUfs: Integrating a File System with GPUs. ACM Transac-

tions on Computer Systems, 32(1), 2014.

[sgxa] Intel(R) Software Guard Extensions for linux* OS, linux-sgx.

https://github.com/01org/linux-sgx. (commit:d686fb0).

[sgxb] Intel(R) Software Guard Extensions for Linux*OS, linux-sgx-

driver. https://github.com/01org/linux-sgx-driver. (com-

mit:0fb8995).

[sgx15] Intel Software Guard Extensions SDK for Linux OS. https://

download.01.org/intel-sgx/linux-1.9/docs/Intel_SGX_SDK_

Developer_Reference_Linux_1.9_Open_Source.pdf, 2015. (Ac-

cessed: September 2017).

[SKYK14] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono.

GPUvm: Why Not Virtualizing GPUs at the Hypervisor? In

USENIX ATC, USENIX ATC’14, pages 109–120. USENIX As-

sociation, 2014.

[SLKP17] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado.

T-SGX: Eradicating Controlled-Channel Attacks Against En-

clave Programs. In Network and Distributed System Security

Symposium (NDSS), 2017.

[SLM+19] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,

Julian Stecklina, Thomas Prescher, and Daniel Gruss. Zom-

159

https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx-driver
https://download.01.org/intel-sgx/linux-1.9/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.9_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.9/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.9_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.9/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.9_Open_Source.pdf

bieLoad: Cross-Privilege-Boundary Data Sampling. CoRR,

abs/1905.05726, 2019. http://arxiv.org/abs/1905.05726.

[SLPR15] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Rat-

nasamy. Blindbox: Deep packet inspection over encrypted traf-

fic. In ACM Conference on Special Interest Group on Data

Communication (SIGCOMM), 2015.

[SMB+10] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor

Pasko, Karl Schimpf, Bennet Yee, and Brad Chen. Adapting

Software Fault Isolation to Contemporary CPU Architectures.

In USENIX Security Symposium, 2010.

[spa] CSMINING Group: Spam Email Datasets. https://csmining.

org/index.php/spam-email-datasets-.html. (Accessed: April

2016).

[SSR] Matthew J.A. Smith, Mikayel Samvelyan, and Tabish Rashid.

Using AI to Solve Collaborative Challenges by Playing Star-

Craft. https://news.developer.nvidia.com/using-ai-to-

solve-collaborative-challenges-by-playing-starcraft/.

(Accessed: February 12, 2020).

[Sta] Statista. Amazon Web Services - Statistics & Facts. https://

www.statista.com/topics/4418/amazon-web-services/. Ac-

cessed: June 20, 2020.

160

http://arxiv.org/abs/1905.05726
https://csmining.org/index.php/spam-email-datasets-.html
https://csmining.org/index.php/spam-email-datasets-.html
https://news.developer.nvidia.com/using-ai-to-solve-collaborative-challenges-by-playing-starcraft/
https://news.developer.nvidia.com/using-ai-to-solve-collaborative-challenges-by-playing-starcraft/
https://www.statista.com/topics/4418/amazon-web-services/
https://www.statista.com/topics/4418/amazon-web-services/

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,

and Zbigniew Wojna. Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2818–2826,

2016.

[SYM+14] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo,

Dave Herman, Brad Karp, and David Mazieres. Protecting

users by confining JavaScript with COWL. In USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI),

2014.

[TB19] Florian Tramè and Dan Boneh. Slalom: Fast, Verifiable and

Private Execution of Neural Networks in Trusted Hardware. In

International Conference on Learning Representations, ICLR

’19, 2019.

[TDC14] Kun Tian, Yaozu Dong, and David Cowperthwaite. A Full

GPU Virtualization Solution with Mediated Pass-through. In

Proceedings of the 2014 USENIX Conference on USENIX An-

nual Technical Conference, USENIX ATC’14, pages 121–132.

USENIX Association, 2014.

[TGC+14] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Na-

cho Navarro, and Mateo Valero. Enabling Preemptive Multi-

programming on GPUs. In ISCA, 2014.

161

[TLW+09] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong,

and Timothy Sherwood. Execution Leases: A Hardware-supported

Mechanism for Enforcing Strong Non-interference. In IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2009.

[TOL+11] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr,

Timothy Levin, Ben Hardekopf, Ryan Kastner, Frederic T. Chong,

and Timothy Sherwood. Crafting a Usable Microkernel, Pro-

cessor, and I/O System with Strict and Provable Information

Flow Security. In International Symposium on Computer Ar-

chitecture (ISCA), 2011.

[TPV17] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-

sgx: A practical library os for unmodified applications on sgx.

In Proceedings of the 2017 USENIX Annual Technical Confer-

ence, USENIX ATC ’17, pages 645–658, Berkeley, CA, USA,

2017. USENIX Association.

[VAPI14] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychron-

akis, and Sotiris Ioannidis. PixelVault: Using GPUs for Se-

curing Cryptographic Operations. In Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications

Security, CCS ’14, pages 1131–1142, New York, NY, USA, 2014.

ACM.

162

[VBMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,

Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.

Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-

tracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In USENIX Security Symposium,

2018.

[VBO+16] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and

Abhishek Bhattacharjee. Observations and Opportunities in

Architecting Shared Virtual Memory for Heterogeneous Sys-

tems. In ISPASS, 2016.

[VEK+07] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell

Krohn, Cliff Frey, David Ziegler, Frans Kaashoek, Robert Mor-

ris, and David Mazières. Labels and Event Processes in the

Asbestos Operating System. ACM Transactions on Computer

Systems (TOCS), 25(4), December 2007.

[VSB14] Lan Vu, Hari Sivaraman, and Rishi Bidarkar. GPU virtual-

ization for high performance general purpose computing on the

ESX hypervisor. In Proceedings of the High Performance Com-

puting Symposium, page 2. Society for Computer Simulation

International, 2014.

[vSGBR18] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh

Razavi. Malicious Management Unit: Why Stopping Cache

163

Attacks in Software is Harder Than You Think. In USENIX

Security, August 2018.

[Vul] Vultr.com. https://www.vultr.com/products/cloud-compute/.

(Accessed: November 2019).

[VVB18] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Gravi-

ton: Trusted Execution Environments on GPUs. In USENIX

Symposium on Operating Systems Design and Implementation

(OSDI), 2018.

[wmt] Shared Task: Machine Translation. http://www.statmt.org/

wmt13/translation-task.html. (Accessed: September 2016).

[WW17] Samuel Weiser and Mario Werner. SGXIO: Generic Trusted

I/O Path for Intel SGX. In Proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy, CO-

DASPY ’17, pages 261–268, New York, NY, USA, 2017. ACM.

[WX15] Zhenyu Wu and Zhang Xu. Whispers in the Hyper-Space:

High-Bandwidth and Reliable Covert Channel Attacks Inside

the Cloud. IEEE/ACM Transactions on Networking, 23(2),

April 2015.

[XBD+12] Shucai Xiao, Pavan Balaji, James Dinan, Qian Zhu, Rajeev

Thakur, Susan Coghlan, Heshan Lin, Gaojin Wen, Jue Hong,

164

https://www.vultr.com/products/cloud-compute/
http://www.statmt.org/wmt13/translation-task.html
http://www.statmt.org/wmt13/translation-task.html

and Wu-chun Feng. Transparent accelerator migration in a vir-

tualized GPU environment. In Proceedings of the 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Comput-

ing, CCGrid, pages 124–131, 2012.

[XBJ+11] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi,

Matti Hiltunen, and Richard Schlilchting. An Exploration of

L2 Cache Covert Channels in Virtualized Environments. In

ACM Workshop on Cloud computing security, 2011.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-

Channel Attacks: Deterministic Side Channels for Untrusted

Operating systems. In Proceedings of the IEEE Symposium on

Security and Privacy, 2015.

[XW15] Yuanzhong Xu and Emmett Witchel. Maxoid: Transparently

Confining Mobile Applications with Custom Views of State. In

ACM European Conference in Computer Systems (EuroSys),

2015.

[YHQL15] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog Com-

puting: Platform and Applications. In ACM/IEEE Workshop

on Hot Topics in Web Systems and Technologies, HotWeb, 2015.

[YL08] Tatu Ylonen and Chris Lonvick. RFC 5246: The Transport

Layer Security (TLS) Protocol: Version 1.2. https://tools.

165

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

ietf.org/html/rfc5246, August 2008. (Accessed: September

2016).

[YPAR20] Hangchen Yu, Arthur M. Peters, Amogh Akshintala, and Christo-

pher J. Rossbach. AvA: Accelerated Virtualization of Accel-

erators. In International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS),

2020.

[YSD+09] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen,

Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,

and Nicholas Fullagar. Native Client: A Sandbox for Portable,

Untrusted x86 Native Code. In Proceedings of the IEEE Sym-

posium on Security and Privacy, 2009.

[ZAM11] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Pre-

dictive mitigation of timing channels in interactive systems. In

ACM Conference on Computer and Communications Security

(CCS), 2011.

[ZAM12] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-

based Control and Mitigation of Timing Channels. In ACM

SIGPLAN Conference on Programming Language Design and

Implementation, 2012.

[ZBwKM06] Nickolai Zeldovich, Silas Boyd-wickizer, Eddie Kohler, and David

Mazières. Making Information Flow Explicit in HiStar. In

166

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI), pages 263–278. USENIX Association, 2006.

[ZBWM08] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazieres.

Securing Distributed Systems with Information Flow Control.

In USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI), 2008.

[ZDB+17] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada

Popa, Joseph E. Gonzalez, and Ion Stoica. Opaque: An Oblivi-

ous and Encrypted Distributed Analytics Platform. In USENIX

Symposium on Networked Systems Design and Implementation,

NSDI, 2017.

[ZDL+17] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang,

and Rui Liu. Vulnerable GPU Memory Management: To-

wards Recovering Raw Data from GPU. PoPETs, 2017(2):57–

73, 2017.

[ZGNM12] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Build-

ing Verifiable Trusted Path on Commodity x86 Computers. In

2012 IEEE Symposium on Security and Privacy, May 2012.

[ZJRR12] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM

side channels and their use to extract private keys. In ACM

Conference on Computer and Communications Security (CCS),

2012.

167

[ZKR+17] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett

Witchel, and Mark Silberstein. Understanding The Security of

Discrete GPUs. In Proceedings of the General Purpose GPUs,

GPGPU-10, pages 1–11, New York, NY, USA, 2017. ACM.

[ZWC+13] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szek-

eres, Stephen McCamant, Dawn Song, and Wei Zou. Practical

control flow integrity and randomization for binary executables.

In Proceedings of the IEEE Symposium on Security and Privacy,

2013.

[ZWSM15] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C.

Myers. A hardware design language for timing-sensitive information-

flow security. In Proceedings of the 20th International Confer-

ence on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’15, pages 503–516, New York,

NY, USA, 2015. ACM.

[ZYC+16] Yan Zhai, Lichao Yin, Jeffrey S Chase, Thomas Ristenpart, and

Michael M Swift. CQSTR: Securing Cross-Tenant Applications

with Cloud Containers. In ACM Symposium on Cloud Com-

puting, 2016.

168

Vita

Tyler Scott Hunt was born in Durango, Colorado. After completing

his work at Piedra Vista High School, Farmington, New Mexico, in 2010, he

entered New Mexico State University in Las Cruces, New Mexico. He received

the degree of Bachelor of Science from New Mexico State University in May

2013. In August 2013, he entered the doctoral program in the Department of

Computer Science at the University of Texas at Austin.

Permanent address: tylerscotthunt@gmail.com

This dissertation was typeset with LATEX� by the author.

�LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

169

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Protecting secrets from the services that process them
	Securely offloading computation to cloud GPUs
	Writing conventions and organization

	Chapter 2. The Malicious Public Cloud Threat Model
	Chapter 3. Background
	Attesting hardware authenticity to a remote user
	Trusted Execution Environments
	Intel Software Guard Extensions
	Hardware limitations

	GPUs
	PCIe and device communication
	GPU Trusted Execution Environments

	Chapter 4. Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data
	Ryoan's speciation of the malicious public cloud threat model
	Native Client background
	Design
	Restricted I/O model
	Secure initialization
	Protecting module provider secrets
	Optimizing module reset
	Ryoan's confined environment
	Protecting Ryoan from privileged software

	Implementation
	Constraints of current hardware
	Ryoan-libc
	Module address space
	I/O control
	Key establishment between enclaves
	Checkpointing confined code

	Use cases
	Email processing
	Personal health analysis
	Image processing
	Translation

	Evaluation
	Understanding workload performance
	SGX encryption overheads

	Chapter 5. Telekine: Secure Computing with Cloud GPUs
	Telekine speciation of the malicious public cloud threat model
	Guarantees
	Limitations.

	GPU Trusted Execution Environment requirements
	Example side-channel attack
	Design
	Data-oblivious stream construction
	Telekine operation
	Data movement example.
	Synchronizing data-oblivious streams

	Implementation
	Evaluation
	Telekine performance tradeoff
	Machine learning algorithms
	Graph algorithms
	WAN latency sensitivity

	Chapter 6. Related work
	Shielding systems.
	Software shielding.
	Hardware shielding.
	Cryptographic shielding.

	Timing and termination channels
	Work related to Ryoan: decentralized information flow control
	Work related to Telekine: secure computation on GPUs

	Chapter 7. Conclusion
	Bibliography
	Vita

