38 research outputs found

    Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas

    Get PDF
    Visual category perception is thought to depend on brain areas that respond specifically when certain categories are viewed. These category-sensitive areas are often assumed to be modules (with some degree of processing autonomy) and to act predominantly on feedforward visual input. This modular view can be complemented by a view that treats brain areas as elements within more complex networks and as influenced by network properties. This network-oriented viewpoint is emerging from studies using either diffusion tensor imaging to map structural connections or effective connectivity analyses to measure how their functional responses influence each other. This literature motivates several hypotheses that predict category-sensitive activity based on network properties. Large, long-range fiber bundles such as inferior fronto-occipital, arcuate and inferior longitudinal fasciculi are associated with behavioural recognition and could play crucial roles in conveying backward influences on visual cortex from anterior temporal and frontal areas. Such backward influences could support top-down functions such as visual search and emotion-based visual modulation. Within visual cortex itself, areas sensitive to different categories appear well-connected (e.g., face areas connect to object- and motion sensitive areas) and their responses can be predicted by backward modulation. Evidence supporting these propositions remains incomplete and underscores the need for better integration of DTI and functional imaging

    Identification of a Lacosamide Binding Protein Using an Affinity Bait and Chemical Reporter Strategy: 14-3-3 ζ

    Get PDF
    We have advanced a useful strategy to elucidate binding partners of ligands (drugs) with modest binding affinity. Key to this strategy is attaching to the ligand an affinity bait (AB) and a chemical reporter (CR) group, where the AB irreversibly attaches the ligand to the receptor upon binding and the CR group is employed for receptor detection and isolation. We have tested this AB&CR strategy using lacosamide ((R)-1), a low-molecular-weight antiepileptic drug. We demonstrate that using a (R)-lacosamide AB&CR agent ((R)-2) 14-3-3 ζ in rodent brain soluble lysates is preferentially adducted, adduction is stereospecific with respect to the AB&CR agent, and adduction depends upon the presence of endogenous levels of the small molecule metabolite xanthine. Substitution of lacosamide AB agent ((R)- 5) for (R)-2 led to the identification of the 14-3-3 ζ adduction site (K120) by mass spectrometry. Competition experiments using increasing amounts of (R)-1 in the presence of (R)-2 demonstrated that (R)-1 binds at or near the (R)-2 modification site on 14-3-3 ζ. Structure-activity studies of xanthine derivatives provided information concerning the likely binding interaction between this metabolite and recombinant 14-3-3 ζ. Documentation of the 14-3-3 ζ-xanthine interaction was obtained with isothermal calorimetry using xanthine and the xanthine analogue 1,7-dimethylxanthine

    Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina

    Get PDF
    When visual contrast changes, retinal ganglion cells adapt by adjusting their sensitivity as well as their temporal filtering characteristics. The latter has classically been described by contrast-induced gain changes that depend on temporal frequency. Here, we explored a new perspective on contrast-induced changes in temporal filtering by using spike-triggered covariance analysis to extract multiple parallel temporal filters for individual ganglion cells. Based on multielectrode-array recordings from ganglion cells in the isolated salamander retina, we found that contrast adaptation of temporal filtering can largely be captured by contrast-invariant sets of filters with contrast-dependent weights. Moreover, differences among the ganglion cells in the filter sets and their contrast-dependent contributions allowed us to phenomenologically distinguish three types of filter changes. The first type is characterized by newly emerging features at higher contrast, which can be reproduced by computational models that contain response-triggered gain-control mechanisms. The second type follows from stronger adaptation in the Off pathway as compared to the On pathway in On-Off-type ganglion cells. Finally, we found that, in a subset of neurons, contrast-induced filter changes are governed by particularly strong spike-timing dynamics, in particular by pronounced stimulus-dependent latency shifts that can be observed in these cells. Together, our results show that the contrast dependence of temporal filtering in retinal ganglion cells has a multifaceted phenomenology and that a multi-filter analysis can provide a useful basis for capturing the underlying signal-processing dynamics

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link

    Lack of essential fatty acids in live feed during larval and post-larval rearing: effect on the performance of juvenile Solea senegalensis

    No full text
    Despite the large progress obtained in recent years, Senegalese sole (Solea senegalensis) production of high quality juveniles is still a bottleneck. This paper examines the effect of larval and post-larval lipid nutrition on juvenile performance and quality. Four dietary treatments were tested: A—enriched Artemia spp. (EA); B—non-enriched Artemia spp. (NEA); C—EA during the pelagic larval period and NEA after larval settlement; D—50% EA and 50% NEA. Juvenile fatty acid profile at 60 days after hatching (DAH) clearly reflected the larval and post-larval diet composition. Feeding sole larvae on NEA (poor in lipids and essential fatty acids-EFA) had a negative effect, reducing growth (total length and dry weight) after 30 DAH and decreasing digestive enzyme activity at the end of the rearing period (60 DAH). However, relatively good performance compared to the EFA-richest treatment (A) was obtained when larvae were fed 50% EA and 50% NEA (D) or even EA only during the pelagic larval period followed by NEA after larval settlement (C). Malpigmentation was not affected by the dietary regimes and its incidence was very low. However, skeletal deformities were prevalent, particularly in the caudal complex, independently of diet. The results confirm that Senegalese sole appear to have lower larval EFA requirements than most cultured marine species and potentially even lower requirements during the post-larval stage. The importance of studying the impact of early nutrition on later juvenile stages was clearly highlighted in this study
    corecore