1,395 research outputs found

    Rhythms of the nervous system: mathematical themes and variations

    Full text link
    The nervous system displays a variety of rhythms in both waking and sleep. These rhythms have been closely associated with different behavioral and cognitive states, but it is still unknown how the nervous system makes use of these rhythms to perform functionally important tasks. To address those questions, it is first useful to understood in a mechanistic way the origin of the rhythms, their interactions, the signals which create the transitions among rhythms, and the ways in which rhythms filter the signals to a network of neurons. This talk discusses how dynamical systems have been used to investigate the origin, properties and interactions of rhythms in the nervous system. It focuses on how the underlying physiology of the cells and synapses of the networks shape the dynamics of the network in different contexts, allowing the variety of dynamical behaviors to be displayed by the same network. The work is presented using a series of related case studies on different rhythms. These case studies are chosen to highlight mathematical issues, and suggest further mathematical work to be done. The topics include: different roles of excitation and inhibition in creating synchronous assemblies of cells, different kinds of building blocks for neural oscillations, and transitions among rhythms. The mathematical issues include reduction of large networks to low dimensional maps, role of noise, global bifurcations, use of probabilistic formulations.Published versio

    Community Development: A Guide for Grantmakers on Fostering Better Outcomes Through Good Process

    Get PDF
    Focuses on participation and collaboration as major elements of processes that are effective. Provides examples of, and offers tools for overcoming, challenges to collaboration. Includes strategies and resources for evaluation and collaboration

    Homomorphisms between diffeomorphism groups

    Full text link
    For r at least 3, p at least 2, we classify all actions of the groups Diff^r_c(R) and Diff^r_+(S1) by C^p -diffeomorphisms on the line and on the circle. This is the same as describing all nontrivial group homomorphisms between groups of compactly supported diffeomorphisms on 1- manifolds. We show that all such actions have an elementary form, which we call topologically diagonal. As an application, we answer a question of Ghys in the 1-manifold case: if M is any closed manifold, and Diff(M)_0 injects into the diffeomorphism group of a 1-manifold, must M be 1 dimensional? We show that the answer is yes, even under more general conditions. Several lemmas on subgroups of diffeomorphism groups are of independent interest, including results on commuting subgroups and flows.Comment: Contains corrections and additional references. A revised version will appear in Ergodic Theory and Dynamical System

    Environmental Conflict Resolution: Strategies for Environmental Grantmakers

    Get PDF
    Outlines the strategies that are employed with the use of ECR to promote collaborative problem solving and manage disputes related to the use and development of natural resources. Includes a description of ten case studies where ECR was used effectively

    Approximate, not perfect synchrony maximizes the downstream effectiveness of excitatory neuronal ensembles

    Get PDF
    The most basic functional role commonly ascribed to synchrony in the brain is that of amplifying excitatory neuronal signals. The reasoning is straightforward: When positive charge is injected into a leaky target neuron over a time window of positive duration, some of it will have time to leak back out before an action potential is triggered in the target, and it will in that sense be wasted. If the goal is to elicit a firing response in the target using as little charge as possible, it seems best to deliver the charge all at once, i.e., in perfect synchrony. In this article, we show that this reasoning is correct only if one assumes that the input ceases when the target crosses the firing threshold, but before it actually fires. If the input ceases later-for instance, in response to a feedback signal triggered by the firing of the target-the "most economical" way of delivering input (the way that requires the least total amount of input) is no longer precisely synchronous, but merely approximately so. If the target is a heterogeneous network, as it always is in the brain, then ceasing the input "when the target crosses the firing threshold" is not an option, because there is no single moment when the firing threshold is crossed. In this sense, precise synchrony is never optimal in the brain.R01 NS067199 - NINDS NIH HH

    Connectedness of the space of smooth actions of Zn\Z^n on the interval

    Full text link
    We prove that the spaces of \Cinf orientation-preserving actions of Zn\Z^n on [0,1][0,1] and nonfree actions of Z2\Z^2 on the circle are connected

    Collaborative Governance: A Guide for Grantmakers

    Get PDF
    Provides a framework for understanding the different tools and approaches within the emerging field of collaborative governance. Includes case examples that illustrate how the process works, and how it can be applied in specific situations

    Excitable neurons, firing threshold manifolds and canards

    Get PDF
    We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674-1697, 2012). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model

    Gamma rhythms and beta rhythms have different synchronization properties

    Get PDF
    Experimental and modeling efforts suggest that rhythms in the CA1 region of the hippocampus that are in the beta range (12-29 Hz) have a different dynamical structure than that of gamma (30-70 Hz). We use a simplified model to show that the different rhythms employ different dynamical mechanisms to synchronize, based on different ionic currents. The beta frequency is able to synchronize over long conduction delays (corresponding to signals traveling a significant distance in the brain) that apparently cannot be tolerated by gamma rhythms. The synchronization properties are consistent with data suggesting that gamma rhythms are used for relatively local computations whereas beta rhythms are used for higher level interactions involving more distant structures

    Frequency control in synchronized networks of inhibitory neurons

    Full text link
    We analyze the control of frequency for a synchronized inhibitory neuronal network. The analysis is done for a reduced membrane model with a biophysically-based synaptic influence. We argue that such a reduced model can quantitatively capture the frequency behavior of a larger class of neuronal models. We show that in different parameter regimes, the network frequency depends in different ways on the intrinsic and synaptic time constants. Only in one portion of the parameter space, called `phasic', is the network period proportional to the synaptic decay time. These results are discussed in connection with previous work of the authors, which showed that for mildly heterogeneous networks, the synchrony breaks down, but coherence is preserved much more for systems in the phasic regime than in the other regimes. These results imply that for mildly heterogeneous networks, the existence of a coherent rhythm implies a linear dependence of the network period on synaptic decay time, and a much weaker dependence on the drive to the cells. We give experimental evidence for this conclusion.Comment: 18 pages, 3 figures, Kluwer.sty. J. Comp. Neurosci. (in press). Originally submitted to the neuro-sys archive which was never publicly announced (was 9803001
    • 

    corecore