203 research outputs found

    An Effective Routability-driven Placer for Mixed-size Circuit Designs

    Get PDF
    We propose a routability-driven analytical placer that aims at distributing pins evenly. This is accomplished by including a group of pin density constraints in its mathematical formulation. Moreover, for mixed-size circuits, we adopt a scaled smoothing method to cope with fixed macro blocks. As a result, we have fewer cells overlapping with fixed blocks after global placement, implying that the optimization of the global placement solution is more accurate and that the global placement solution resembles a legal solution more. Routing solutions obtained by a commercial router show that for most benchmark circuits, better routing results can be achieved on the placement results generated by our pin density oriented placer

    Distributed NEGF Algorithms for the Simulation of Nanoelectronic Devices with Scattering

    Get PDF
    Through the Non-Equilibrium Green's Function (NEGF) formalism, quantum-scale device simulation can be performed with the inclusion of electron-phonon scattering. However, the simulation of realistically sized devices under the NEGF formalism typically requires prohibitive amounts of memory and computation time. Two of the most demanding computational problems for NEGF simulation involve mathematical operations with structured matrices called semiseparable matrices. In this work, we present parallel approaches for these computational problems which allow for efficient distribution of both memory and computation based upon the underlying device structure. This is critical when simulating realistically sized devices due to the aforementioned computational burdens. First, we consider determining a distributed compact representation for the retarded Green's function matrix GRG^{R}. This compact representation is exact and allows for any entry in the matrix to be generated through the inherent semiseparable structure. The second parallel operation allows for the computation of electron density and current characteristics for the device. Specifically, matrix products between the distributed representation for the semiseparable matrix GRG^{R} and the self-energy scattering terms in Σ<\Sigma^{<} produce the less-than Green's function G<G^{<}. As an illustration of the computational efficiency of our approach, we stably generate the mobility for nanowires with cross-sectional sizes of up to 4.5nm, assuming an atomistic model with scattering

    Computationally efficient modeling and simulation of large scale systems

    Get PDF
    A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.-1 and at least one other matrix, with first equation including X.sup.-1Y, X.sup.-1A, and X.sup.-1P, and the second equation including X.sup.-1A and X.sup.-1P

    Computationally efficient modeling and simulation of large scale systems

    Get PDF
    A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P

    Computationally Efficient Modeling and Simulation of Large Scale Systems

    Get PDF
    A system for simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof, including a processor, and a memory, the processor configured to perform obtaining a matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure, the element values for each matrix including inductance L and inverse capacitance P, obtaining an adjacency matrix A associated with the interconnect structure, storing the matrices X, Y, and A in the memory, and performing numerical integration to solve first and second equations

    Do English and Chinese EQ-5D versions demonstrate measurement equivalence? an exploratory study

    Get PDF
    BACKGROUND: Although multiple language versions of health-related quality of life instruments are often used interchangeably in clinical research, the measurement equivalence of these versions (especially using alphabet vs pictogram-based languages) has rarely been assessed. We therefore investigated the measurement equivalence of English and Chinese versions of the EQ-5D, a widely used utility-based outcome instrument. METHODS: In a cross-sectional study, either EQ-5D version was administered to consecutive outpatients with rheumatic diseases. Measurement equivalence of EQ-5D item responses and utility and visual analog scale (EQ-VAS) scores between these versions was assessed using multiple regression models (with and without adjusting for potential confounding variables), by comparing the 95% confidence interval (95%CI) of score differences between these versions with pre-defined equivalence margins. An equivalence margin defined a magnitude of score differences (10% and 5% of entire score ranges for item responses and utility/EQ-VAS scores, respectively) which was felt to be clinically unimportant. RESULTS: Sixty-six subjects completed the English and 48 subjects the Chinese EQ-5D. The 95%CI of the score differences between these versions overlapped with but did not fall completely within pre-defined equivalence margins for 4 EQ-5D items, utility and EQ-VAS scores. For example, the 95%CI of the adjusted score difference between these EQ-5D versions was -0.14 to +0.03 points for utility scores and -11.6 to +3.3 points for EQ-VAS scores (equivalence margins of -0.05 to +0.05 and -5.0 to +5.0 respectively). CONCLUSION: These data provide promising evidence for the measurement equivalence of English and Chinese EQ-5D versions

    Maritime threat response

    Get PDF
    This report was prepared by Systems Engineering and Analysis Cohort Nine (SEA-9) Maritime Threat Response, (MTR) team members.Background: The 2006 Naval Postgraduate School (NPS) Cross-Campus Integrated Study, titled “Maritime Threat Response” involved the combined effort of 7 NPS Systems Engineering students, 7 Singaporean Temasek Defense Systems Institute (TDSI) students, 12 students from the Total Ship Systems Engineering (TSSE) curriculum, and numerous NPS faculty members from different NPS departments. After receiving tasking provided by the Wayne E. Meyer Institute of Systems Engineering at NPS in support of the Office of the Assistant Secretary of Defense for Homeland Defense, the study examined ways to validate intelligence and respond to maritime terrorist attacks against United States coastal harbors and ports. Through assessment of likely harbors and waterways to base the study upon, the San Francisco Bay was selected as a representative test-bed for the integrated study. The NPS Systems Engineering and Analysis Cohort 9 (SEA-9) Maritime Threat Response (MTR) team, in conjunction with the TDSI students, used the Systems Engineering Lifecycle Process (SELP) [shown in Figure ES-1, p. xxiii ] as a systems engineering framework to conduct the multi-disciplinary study. While not actually fabricating any hardware, such a process was well-suited for tailoring to the team’s research efforts and project focus. The SELP was an iterative process used to bound and scope the MTR problem, determine needs, requirements, functions, and to design architecture alternatives to satisfy stakeholder needs and desires. The SoS approach taken [shown in Figure ES-2, p. xxiv ]enabled the team to apply a systematic approach to problem definition, needs analysis, requirements, analysis, functional analysis, and then architecture development and assessment.In the twenty-first century, the threat of asymmetric warfare in the form of terrorism is one of the most likely direct threats to the United States homeland. It has been recognized that perhaps the key element in protecting the continental United States from terrorist threats is obtaining intelligence of impending attacks in advance. Enormous amounts of resources are currently allocated to obtaining and parsing such intelligence. However, it remains a difficult problem to deal with such attacks once intelligence is obtained. In this context, the Maritime Threat Response Project has applied Systems Engineering processes to propose different cost-effective System of Systems (SoS) architecture solutions to surface-based terrorist threats emanating from the maritime domain. The project applied a five-year time horizon to provide near-term solutions to the prospective decision makers and take maximum advantage of commercial off-the-shelf (COTS) solutions and emphasize new Concepts of Operations (CONOPS) for existing systems. Results provided insight into requirements for interagency interactions in support of Maritime Security and demonstrated the criticality of timely and accurate intelligence in support of counterterror operations.This report was prepared for the Office of the Assistant Secretary of Defense for Homeland DefenseApproved for public release; distribution is unlimited

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    Exact Closed Form Fom~ulafo r Partial Mutual Inductances of On-Chip Interconnects

    Get PDF
    In this paper, we propose a new exact closed form mutual inductance equation for on-chip interconnects. We express the mutual inductance between two parallel rectangular conductors as a weighted sum of self-inductances. We do not place any restrictions on the alignment of the two parallel rectangular conductors. Moreover, they could be co-planar or reside on different layers. Most important, detailed study shows that our formula is numerically more stable than that derived in [2] for practical cases of modem on-chip interconnects
    corecore