
1111111111111111111imnnuu ~

(12) United States Patent
Jain et al.

(54) COMPUTATIONALLY EFFICIENT
MODELING AND SIMULATION OF LARGE
SCALE SYSTEMS

(71) Applicant: Purdue Research Foundation, West
Lafayette, IN (US)

(72) Inventors: Jitesh Jain, Rajasthan (IN); Stephen F
Cauley, West Lafayette, IN (US); Hong
Li, He nan (CN); Cheng-Kok Koh, West
Lafayette, IN (US); Vankataramanan
Balakrishnan, West Lafayette, IN (US)

(73) Assignee: Purdue Research Foundation, West
Lafayette, IN (US)

(*) Notice: 	Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/710,145

(22) Filed: 	Dec. 10, 2012

(65) 	 Prior Publication Data

US 2013/0124168 Al 	May 16, 2013

Related U.S. Application Data

(63) Continuation of application No. 12/852,942, filed on
Aug. 9, 2010, now Pat. No. 8,336,014.

(51) Int. Cl.
G06F 17150 	(2006.01)

(52) U.S. Cl.
USPC 716/115; 716/106; 716/111; 703/4

(58) Field of Classification Search
USPC 716/106,111, 115; 703/4
See application file for complete search history.

(1o) Patent No.: 	US 8,745,563 B2
(45) Date of Patent: 	Jun. 3, 2014

(56) 	 References Cited

U.S. PATENT DOCUMENTS

5,692,158 A * 11/1997 Degeneff et al 703/2
6,041,170 A * 3/2000 Feldmann et al 703/2
6,192,328 B1* 2/2001 Kahlertetal 703/2
6,820,245 B2 * 11/2004 Beattie et al 716/115
7,228,259 B2 * 6/2007 Freund 703/2
7,307,492 B2 * 12/2007 Tripathi et al 333/111
7,353,157 B2 * 4/2008 Wasynczuk et al 703/14

2003/0177458 Al* 9/2003 Beattie et al 716A

OTHER PUBLICATIONS

Jain et al.; "Fast simulation of VLSI interconnects'; IEEE/ACM
International Conference; publication date: Nov. 7-11, 2004; pp.
93-98.*

* cited by examiner

Primary Examiner Naum Levin
(74) Attorney, Agent, or Firm Purdue Research
Foundation

(57) 	 ABSTRACT

A system for simulating operation of a VLSI interconnect
structure having capacitive and inductive coupling between
nodes thereof, including a processor, and a memory, the pro-
cessor configured to perform obtaining a matrix X and a
matrix containing different combinations of passive circuit
element values for the interconnect structure, the element
values for each matrix including inductance L and inverse
capacitance P, obtaining an adjacency matrix A associated
with the interconnect structure, storing the matrices X, Y, and
A in the memory, and performing numerical integration to
solve first and second equations.

3 Claims, 17 Drawing Sheets

^d^ ttrt'eS ~'iafr~=:Y
-sr- r2~res%iotd

~,j

-vt- thr~9 ok3-,CR1:
--~- thres!iatd- .~r~o1

1,014

https://ntrs.nasa.gov/search.jsp?R=20150003306 2019-08-31T11:22:15+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42717759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FIG. 1

U.S. Patent 	Jun. 3, 2014 	Sheet 1 of 17 	 US 8,745,563 B2

U.S. Patent 	Jun. 3 , 2014 	Sheet 2 of 17
	

US 8,745,563 B2

E ----------------- A--------------- ~ 	 ri
Ca? 	 rM 	ens 	kri 	Nr 	0" 	N 	 C3 r

\

. ~

ate:
« Q:

\~

/
~ < ~

~ m
Q

U.R. Patent 	Jun. 3 2014 	She!] of 17 	US 8,743,363 G2

r

C

U.S. Patent 	Jun. 3, 2014 	Sheet 4 of 17 	 US 8,745,563 B2

Column Number

FIG. 4(a.)

U.S. Patent 	Jun. 3, 2014 	Sheet 5 of 17 	 US 8,745,563 B2

Col - unzn Number

fgTG. ,-I(b)

J

U.S. Patent 	Jun. 3, 2014 	Sheet 6 of 17 	 US 8,745,563 B2

Column Number

FIG. 4(c)

Ls

co

Iq
0

0

n

ci
i

r~

U.S. Patent 	Jun. 3 , 2014 	Sheet 7 of 17 	US 8 ,745,563 B2

CD 	CD 	0 	CD
E 	E

< -- -- -- -- --
 ~CL ~ I14

CIQ

:-o
CD

0

m
r
X

n

U.S. Patent 	Jun. 3, 2014 	Sheet 8 of 17 	 US 8 ,745,563 B2

W

~4

U.S. Patent 	Jun. 3, 2014 	Sheet 9 of 17 	 US 8,745,563 B2

15 - ---------------- -------------- ---------- ------------------ --- ------------------- T- ------ ? --- - ---------- 7 --------------------------------------

--------------------------------------- ALP
GKG
INDUCWISE

10

V

- - - - - - - --- - - - - - - - - - - 	
.......................................

10 -
2 	

10 -4
	

1 0
5

Threshold

FIG, 7

U.S. Patent Jun. 3, 2014 	Sheet 10 of 17 	US 8,745,563 B2

15

10

w
CIO

0
10 -2 10 	 10'

Diresho1d

FIB, 8

10-

U.S. Patent 	Jun. 3, 2014 	Sheet 11 of 17 	US 8,745,563 B2

z

Column Number

FIG. 9

Column Number

FIG. 10

U.S. Patent 	Jun. 3, 2014 	Sheet 12 of 17 	US 8,745,563 B2

t~.

Column Number

FIG. -11

U.S. Patent 	Jun. 3, 2014 	Sheet 13 of 17 	US 8 ,745,563 B2

0

c~

r~

s~

N"^

CJ 	W
r~
LO

LJ

C~
CD
co

0
J

CD
0

LO 	 co 	N 	 07 	co 	1l- 	110

U.S. Patent 	Jun. 3, 2014 	Sheet 14 of 17 	US 8 ,745,563 B2

C°
;a

r--

f+7

`m n E 	̂~ E E 	~
i~

LO }—

at7

0.

w 	 r v U
cx x <

; cn w~

t~

li

/rl

r:

F~f4

E

U.S. Patent 	Jun. 3, 2014 	Sheet 15 of 17 	US 8,745,563 B2

CL)
4-d

.

.
----------------- - - - - - - - - - - - - - -

----- ------- --- 	 ------ ------- - - - - - - - - - - - - 	-

- - - - - - - - - - - - - - j- ------- ------- ------- ------- --------------- ------- ------- ------- ------- --------

.......

----------------------- -------- ------- -------

- ------ ------- - ------- ------- ------- ------- ----------------------- ------- ------- -------- --------

I -------- ------- - ------- ------- -------- ------- ------- ------- ------- ------- ------- --------

x "I V

.....

............... ------- -------

----- ------- ------- -------- ----------------------- ------- ------- -------- --------

.
U

------- ------- ----------

-------- -------- -------

------- -----

U.S. Patent 	Jun. 3, 2014 	Sheet 16 of 17 	US 8,745,563 B2

a) 	 CD 	 il-- 	 w 	 LO

Llc:jdwnSUOO AJOWen 10 Oil%

LD

.r

04

-0
tl)

V) 	
LO
C) LO

0)

n r)
CO

z

CIA

----------------------- -
U') CD CD 	 LO 	 CD 	 Ln 	 0

uoijdwnsuc ,,) kiowa ~j , o opH

U.S. Patent 	Jun. 3, 2014 	Sheet 17 of 17 	US 8,745,563 B2

US 8,745,563 B2
1 	 2

COMPUTATIONALLY EFFICIENT
MODELING AND SIMULATION OF LARGE

SCALE SYSTEMS
where

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of patent
application Ser. No. 12/852,942, filed on Aug. 9, 2010, now
U.S. Pat. No. 8,336,014 to Jain et al., issued Dec. 18, 2012,
whichis a divisional application of patent application Ser. No.
11/593,465, filed on Nov. 6, 2006, now U.S. Pat. No. 7,774,
725 to Jain et al., issued Aug. 10, 2010, which claims the
benefit of Provisional Patent Application No. 60/733,460,
filed Nov. 4, 2005, and Provisional Patent Application No.
60/740,990, filed Nov. 30, 2005, which applications are
hereby incorporated by reference along with all references
cited therein.

GOVERNMENT RIGHTS

This invention was made with government support under
Contract/Grant No. NCC 2-1363 awarded by the National
Aeronautics and Space Administration (NASA), under Con-
tract/Grant Nos. CCR-9984553 and CCR-0203362 awarded
by the National Science Foundation, and under Contract/
Grant No. USAF-FA8650-04-D-2409 awarded by the United
States Air Force Research Laboratories. The government has
certain rights in the invention.

TECHNICAL FIELD OF THE INVENTION

	

5 9 AT 	C 	v
C

— ~ — Aa 0 	C— ~ 0 L0 1 ' x— ~ itI

A +T is b = ~ 	11-j=Ag
0 	

R-'Ag , and C = ATCAc .

10

R is the resistance matrix. The matrices g, L and C are the
conductance, inductance and capacitance matrices respec-
tively, with corresponding adjacency matrices A g, Ai and A,.

15 IS is the current source vector with adj acency matrix A , and v„
and ii are the node voltages and inductor currents respectively.
With n denoting the number of inductors, we note that

L,C,ReR" ' C, 0 ~R2n 2

A standard algorithm for the numerical integration of dif-
20 ferential equations such as (1) is the trapezoidal method.

Consider a uniform discretization of the time axis with reso-
lution h. Then, using the notation xk=x(kh), and the approxi-
mations

25

+ 	 +1

	

x(t)
N 	 and

Xk
[fit 	r--kh 	h 	 2

30 over the interval [kh,(k+l)h], we may solve for xk+r in terms
of xk by solving the equation

C C 	 bk+1 + bk 	 (2)

35 	 ~ 2+
	+1 h~z

—
—(

C

2—

C
h Jz + 	2 	.

The present invention relates generally to electrical circuit
modeling and simulation techniques and, more particularly,
to methods for simulating interconnect effects in very large
scale integrated circuits.

BACKGROUND OF THE INVENTION
40

With aggressive technology scaling, the accurate and effi-
cient modeling and simulation of interconnect effects has
become (and continues to be) a problem of central impor-
tance. In a three-dimensional interconnect structure there can
be significant amounts of coupling, both inductive and 45
capacitive, between interconnects. Models that capture these
effects tend to involve large matrices, resulting in extraordi-
nary demands on memory. Simulation with these models
require prohibitive amounts of computation.

While all coupling effects in theory extend without bound, 50
it is well-recognized that, in practice, the effects of capacitive
coupling, and to some extent that of inductive coupling, can
be assumed to be local without much sacrifice in accuracy.
Practical modeling and simulation techniques exploit this
localization to significantly reduce storage and computa- 55
tional costs. For practical interconnect structures, the capaci-
tance matrix C and the inverse of the inductance matrix
K=L-1 turn out to be (approximately) sparse. A number of
techniques exploit the sparsity in K at extraction level.
Exploiting sparsity of C and K in simulation however, is much 60
less straightforward. The main problem is that simulation
requires terms that not only involve the sparsified matrices C
and K, but also inverses of terms that involve them; these
inverses are dense in general.

The Modified Nodal Analysis (MNA) of interconnect 65
structures such as the one shown in FIG.1 yields equations of
the form

A direct implementation of thi s algorithm requires O(n 3 +pn2)
operations, where p is the number of time steps. The direct
implementation ignores the structure of the matrices 6 and C
that is evident in (1); explicitly recognizing this structure
yields the so-called Nodal Analysis (NA) equations, used in
INDUCTWISE:

-

~
-

jC

+

C

- -

+

S
--

w
-

+1=

kA 	s+ 1 +is). 	(3)hZ 	—j+hC--Sw, 	aa?
- ---- - --- —

U

an 	

VT-----------

	

2A I is +1 = 2Aa is + hS(v k,+1 + v), 	 (4)

where S=A,KA iT (recall that K=L -1 , L being the inductance
matrix, with corresponding adjacency matrix A i, and AiT

being the transpose of A i).
The NA equations (3) and (4) enjoy several advantages

over the NINA equations (1). The first advantage is that the
solution of equations (1), a problem of size 3n, has been
divided into two sub-problems of sizes 2n and 2n, which
yields computational savings with polynomial-time algo-
rithms. Next, it has been observed that with typical VLSI
interconnect structures, the matrices K, C and g exhibit spar-
sity. This can be used at the extraction stage to write down (3)
and (4) with fewer parameters. Finally, at the simulation
stage, the structure of the matrix U defined in (3) symmetry,
positive-definiteness and sparsity lends itself to the use of
fast and sound numerical techniques such as Cholesky fac-

US 8,745,563 B2
3

torizations. These advantages have been extensively used to
develop INDUCTWISE. For future reference, we note that
the computation with INDUCTWISE is O(n 3 +pn2) opera-
tions, and is usually dominated by O(pn 2).

SUMMARY OF THE INVENTION

The approach that is employed is to sparsity the various
matrices that underlie the model of interconnects; the result-
ing approximate models can be represented by far fewer
parameters , leading to savings in storage.

The present invention presents methods that systematically
take advantage of sparsity in C and K, in simulation, achiev-
ing a very significant reduction in computation with very little
sacrifice in simulation accuracy. The first idea underlying our
approach is that if the sparsity in the inverse of a dense matrix
is known, the (sparse) inverse can be computed very effi-
ciently. We take advantage of this fact by writing the simula-
tion equations in terms of L and P —C-i . The most computa-
tionally intensive step in simulation, of system formulated in
such a fashion , reduces to that of matrix-vector multiplication
involving a sparse matrix . We also show that savings with
sparse-matrix-vector multiplication can be obtained with
simulation using K=L-i and C, as well , but to a lesser extent.

The RLP formulation is extended to include non-linear
devices, without sacrificing the computational benefits
achieved due to sparsity of the linear system. It should be
noted that the A matrix involved in the solution of the linear
system is constant throughout the simulation. In contrast, the
A matrix involved in solving the non-linear system changes in
each simulation step. However, the matrix is sparse. Due to
the sparse and time varying nature of the problem at hand
Krylov subspace based iterative methods could be used for
efficient simulation . Our second contribution is to introduce a
novel preconditioner constructed based on the sparsity struc-
ture of the non-linear system. The inverse of the precondi-
tioner has a compact representation in the form of the Had-
amard product , which facilitates not only the fast
computation of the inverse, but also the fast dense matrix-
vector product.

The objects and advantages of the present invention will be
more apparent upon reading the following detailed descrip-
tion in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 a distributed model of a typical three dimensional
VLSI interconnect structure that may be operated in simula-
tion with the methods of the present invention.

FIG. 2 shows the average sparsity index of the matrices
U- ' V, U- 'A, U- 'AS T and U- 'S, for a structure as a function
of h for various values of E.

FIG. 3 shows average sparsity index of the matrices X - 'Y,
X- 'A and X`AP, for a structure as a function of h for the
sparsity threshold of e -0.001 , as compared with the average
sparsity index of the matrices encountered in the GKC-algo-
rithm.

FIG. 4(a) shows the significant entries (shown darker) of
the adjacency matrix A for a structure with 1500 conductors.

FIGS. 4(b) and 4(c) show the significant entries (shown
darker) of W` and X -i , respectively, for the structure in FIG.
4(a).

FIG. 5 shows the voltage wave forms, obtained from
SPICE and Exact-RLP, of the active line and the seventh line
of a 100-conductor circuit.

4
FIG. 6 shows the voltage wave forms, obtained through

INDUCTWISE, Exact-RLP, RLP, and GKC, of the active line
and the seventh line of a 600 -conductor circuit.

FIGS. 7 and 8 show plots of the RMSE for the active and
5 the seventh line as a function of threshold value for a 600-

conductor circuit.
FIG. 9 shows the sparsity structure (nonzero entries shown

darker) of the A matrix for an exemplary circuit of parallel
wires driving a bank of inverters.

10 	FIG. 10 shows an exemplary preconditioner matrix that
may be used with the exemplary circuit of FIG. 9.

FIG. 11 shows the sparsity pattern (nonzero entries shown
darker) of matrix A of a circuit having only non-linear devices
and no interconnects.

15 	FIG. 12 shows average sparsity versus circuit size.
FIG. 13 shows the voltage wave form obtained through

SPICE and Exact-RLP and SASIMI.
FIG. 14 shows a two dimensional non-uniform spatial grid

for a Nanotransistor.
20 FIG. 15 shows the ratio of memory consumption of the

algorithm in [9] as compared to ours for varying division sizes
(N,JD).

FIG. 16 shows the ratio of memory consumption of the
algorithm in [9] as compared to ours for a varying number of

25 divisions (D).

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

30 For the purpose of promoting an understanding of the
principles of the invention , reference will now be made to the
embodiments illustrated in the drawings and specific lan-
guage will be used to describe the same. It will nevertheless
be understood that no limitation of the scope of the invention

35 is thereby intended , such alterations and further modifica-
tions in the illustrated device and such further applications of
the principles of the invention as illustrated therein being
contemplated as would normally occur to one skilled in the art
to which the invention relates.

40 	While significant storage and computational advantages
accrue with INDUCTWISE, we note that the sparsity of U has
not been fully taken advantage of at the level of linear algebra
(beyond the possible use of sparse Cholesky factorizations) in
the numerical solution of (3). In particular, with the formula-

45 tion used by INDUCTWISE, while the matrix U is sparse, its
inverse is dense. Thus , trapezoidal numerical integration, at a
first glance, entails matrix-vector multiplies with a dense
matrix at each time step . However, it has been observed that
the matrices U`V (where V is defined in (3)), U - 'A,

50 U- 'A T and U-1 S are approximately sparse, and this informa-
tion can be used to significantly reduce the computation as
follows. Rewrite (3) and (4) as

v k+i_U iVv„k-2U'A,Tiik+U'AiT(jk+i+I, ~

55 	
7k 1_ 	7k 	 k 1 2L~ A i ii + 2L~ A i ii +hL~ S(v„ + +v„~ .

Pre-compute and store the sparsified matrices U - 'V,
U- 'A, U- 'AS T and U- ' S. Then, every time step in the trap-
ezoidal integration scheme requires only sparse matrix-vec-

60 for multiplies. We will henceforth refer to this technique as
the GKC-algorithm (as the computations are done with the
conductance , inverse of the inductance and the capacitance as
the parameters).

In order to quantify the computational savings obtained
65 with the GKC-algorithm over INDUCTWISE, we define the

"sparsity index" µ e(A) of a matrix A as ratio of the number of
entries ofA with absolute value less than e to the total number

US 8,745,563 B2
5

of entries. Then, the computation required for each iteration
withthe GKC-algorithm, with some appropriate value of e, is
0((1-v)n2) where v is the minimum of the sparsity indices of
the matrices U-'V, U-'A, U-'A T and U- ' S. The value of v
can be expected to depend on the threshold for detecting
sparsity e, as well as the time step size h. FIG. 2 shows the
average sparsity index of the matrices U - ' V, U-'A, U-'A,T
and U-1 S, for a structure with three parallel planes consisting
of 600 conductors, as a function of h for various values of E.
The typical value of h used solving the MNA equations for
VLSI interconnects is 0.1 picoseconds. With such values of h
and e=0.001, it can be seen that v-0.8. Thus the total compu-
tation time with the GKC-algorithm is approximately a fifth
of that required by INDUCTWISE.

We now explore an alternative formulation of the NINA
equations that uses the resistance , inductance and the inverse
of the capacitance matrix . For typical interconnect structures,
shown in FIG. 1, we can manipulate the NINA equations (2) to
obtain

~ h + + 4APAT)ia+l = 	 (5)

X — —.

~ h — —

 gAPAT)i~ +Av, + 4AP(ls +t +ls),

Y— — —

and

6
FIG. 3 shows the average sparsity index of the matrices

X- 'Y, X- 'A and X- 'AP, for a structure with three parallel
planes consisting of 600 conductors, as a function of h for the
sparsity threshold of e -0.001 , as compared with the average

5 sparsity index of the matrices encountered in the GKC-algo-
rithm. It is clear that the matrices encountered in the RLP-
algorithm exhibit much higher sparsity over a wide range of
time-steps. In particular, for h-0.1 ps, it can be seen that
y-0.9. Thus the total computation time with the above RLP-

to algorithm is approximately one-tenth of that required by the
RLP formulation that does not use sparsity information.
When compared to the GKC-algorithm and INDUCTWISE
which use twice as many state variables, the amount of com-
putation required by the RLP-algorithm is approximately

15 one-eighth and one-fiftieth respectively.
We now provide the details on the fast inversion of X.

Assume for simplicity that the sparsity pattern in X -i is
known, deferring for later the problem of detecting this spar-
sity pattern. Then, manipulations of only a subset of the

20 entries of the X matrix (rather than the entire X matrix) can be
used to compute the inverse matrix . To briefly illustrate the
idea consider the example when XER i and the 5th row of
X-1 has the following form:

[00 0*00*00],
25 where denotes the nonzero entries. Then , it can be shown

that these nonzero entries can be computed exactly from the
second row of the inverse of the following 3x3 matrix
obtained from X:

where P is the inverse capacitance matrix i . e P-C-i and is
the adjacency matrix of the circuit, obtained by first addingA g
and Ai and then removing zero columns (these correspond to
intermediate nodes, representing the connection of a resis-
tance to an inductance). When compared with the NA equa-
tions (3) and (4), we see that the number of state variables has
been halved. Compared to INDUCTWISE, this represents
immediate savings . For future reference , we will term the
technique of directly solving (5) and (6) as the "Exact-RLP"
algorithm.

In contrast with the GKC-algorithm , it turns out here that X
is dense, but with an inverse that is approximately sparse.
Thus, windowing techniques such as those employed by
INDUCTWISE during the extraction stage to obtain a spar-
sified matrix K can be employed here to quickly compute a
sparsified X-i . (Windowing techniques details will be
described below.) Moreover, the matrices X - 'Y, X- 'A and
X- 'AP turn out to be approximately sparse. Thus, paralleling
the development of the GKC-algorithm, we have the follow-
ing RLP-algorithm:

Rewrite (5) and (6) as

vk+i = v — 2PAT(ik+i+ik)+ h P(Ik+i +Is), (6) 30
X33 X35 X38

X53 X55 X58

X83 X85 X88

35 	More generally, suppose that there are a, nonzero entries in
the ith row of X-i . By following a procedure as above, the ith
row of X-1 can be computed by inverting an a xa matrix.
Thus, the overall computation in determining is X -i is
O(E iai3). It is typical with VLSI interconnects that a, is a

40 small constant . Thus if X-1 is exactly sparse, with a known
sparsity pattern, it can be computed in O(n) from X . Table I
gives the time taken for inversion for different circuit sizes.

TABLE I
45

Inversion time in matlab (in seconds)

No. of conductors

500 	1000 	2000 	5000

50 	
Direct Inversion 	.29 	2.18 	16.87 	260.68

Fast Inversion 	 .79 	1.48 	2.93 	10.17

Thus, there remains the problem of determining the spar-
55 sity pattern in X-i . Recall that

i', + ' = X
-1

 Yia + X
—i

 Avk, + 4 X—i AP(ls+i + I,),

X —i Avk,+i = X_ 1 Avk,— ZX—i APAT (ia +1 +ia)+ ZX—i AP(ls+i +I,)

Pre-compute and store the sparsified matrices X - 'Y, X- 'A
and X- 'AP. Again, every time-step in the trapezoidal integra-
tion scheme requires only sparse matrix-vector multiplies. As
with the GKC-algorithm, the total computation with the RLP-
algorithm is dominated by 0((I-y)n 2), where is the y is the
minimum of the sparsity indices the matrices X - 'Y, X- 'A and
X-'AP.

LR h
X= h + 2 + 4 APA T .

60
Let

L R 	h
W - h + 2 and Z= 4 APAT .

65

Y , (v; - vi)'
15

Y, V

where v and v denote the waveforms obtained from Exact-
RLP and the algorithm under consideration respectively. A

20 threshold value of 0.001 was chosen for sparsification of RLP
and GKC algorithms, as well as for sparsification of L -1 in
INDUCTWISE. Table 2 presents a summary of the results
from the study of simulation accuracy.

25 TABLE 2

RMSE comparison.

Active Line 7th line

30 	Size INDUCTWISE RLP 	GKC INDUCTWISE RLP GKC

300 .0013 .0010 	.0017 .1622 .1266 .1960
600 .0014 .0011 	.0014 .4381 .3452 .4651
900 .0006 .0007 	.0008 .3222 .3076 .4078

1200 .0004 .0004 	.0004 .2382 .2656 .2992

35 	1500 .0003 .0003 	.0004 .2021 .2200 .2336

US 8,745,563 B2
7

Then

x-'=W '-W '(W '+z ')- ' ff- 1 . 	 (7)

For the values of R, L, C and h under consideration, it turns
out that

X -1gly-1-w-1Zw 1 . 	 (8)

Thus, the significant entries of X -1 can be obtained by super-
posing the significant entries of W-1 and the significant
entries of W-1 ZW-1 . The sparsity pattern of W -1 can be
efficiently determined using the techniques available in the
literature. Turning next to

W -1 ZW -1 =
h
4 W -I APA rW

-1

note that the significant entries of W -1A are obtained by
distributing the significant entries of W-1 into locations deter-
mined by the adjacency matrix A. In summary, we have the
following heuristic for predicting the sparsity pattern in X -1 :

First determine the significant entries of W -1 by determining
the set of segments that are inductively couple with a given
segment. In addition, spread the nonzero entries of W -1 to
locations suggested by the adjacency matrix to find the
remaining significant entries.

These ideas are illustrated via a three dimensional inter-
connect structure of three parallel planes with 1500 conduc-
tors. In FIG. 4(a), the significant entries of the adjacency
matrix A are shown to be darker. FIGS. 4(b) and 4(c) show the
entries of W-1 and X-1 respectively, again withthe significant
entries shown darker.

We emphasize that the actual computation of the signifi-
cant entries of X -1 proceeds via the technique in, where given
the knowledge of the sparsity pattern resident in X -1 , the
actual entries can be directly and efficiently computed. Thus,
(7) and (8) are not used for computation, but only to motivate
the heuristic for efficiently determining the sparsity pattern of
X-1 .

We implemented the INDUCTWISE, RLP and GKC algo-
rithms in MATLAB on a PC with an Intel Pentium IV 2.4 GHz
processor. In order to quantify the simulation accuracy with
various methods, we used as the benchmark the Exact-RLP
simulation (recall that this is the direct simulation of equa-
tions (5) and (6)). (While SPICE simulations would have been
more natural to use as the benchmark, we found that the
computation time grew quickly to make them impractical; for
a modest-size circuit comprising 100 parallel conductors,
SPICE simulation took 350 seconds as compared to 1.08
seconds with the Exact-RLP algorithm, with no detectable
simulation error, as shown in the FIG. 5).

Simulations were done on a three dimensional structure of
three parallel planes, with each plane consisting of busses
with parallel conductors, with wire-lengths of 1 mm, and a
cross section of 1 ltmx I µm. The wire separation was taken to
be 1 µm; each wire was divided into ten segments. A periodic
IV square wave with rise and fall times of 6 ps each was

8
applied to the first signal on the lowest plane, with a time
period of 240 ps. All the other lines were assumed to be quiet.
For each wire, the drive resistance was I OQ the load capaci-
tance was 20 fF. A time step of 0.15 ps was taken and the

5 simulation was performed over 330 ps (or 2200 time steps).
As expected, with all methods, there is an inherent trade-

off between simulation accuracy and cost (CPU time and
memory). We first present results comparing the accuracy in
simulating the voltage waveforms at the far end of the first

to (active) and the seventh (victim or quiet) lines. The metric for
comparing the simulations is the relative mean square error
(RMSE) defined as

It can be seen that the simulation accuracy of the RLP and
the GKC algorithms are comparable to that of INDUCT-
WISE, with a marginally inferior performance as measured

40 by the RMSE. A plot of the voltage waveforms at the far end
of the active line and the 7th line, obtained by INDUCT-
WISE, RLP, and GKC algorithms, is shown in the FIG. 6.

We briefly explore the influence the choice of the threshold
for determining sparsity. A higher threshold can be expected

45 to decrease the computational and memory requirements,
howeverwith loss in simulation accuracy. FIGS. 7 and 8 show
plots of the RMSE for the active and seventh line as a function
of threshold value, again for a circuit of size 600 conductors.
Any value of the threshold below 0.001 appears to be a

50 reasonable choice.
We now turn to a comparison of the computational and

memory requirements between INDUCTWISE, RLP and
GKC algorithms. Table 3 summarizes the findings.

TABLE 3

Run time and memory comparisons

Time (in sec) Memory (in MB)

Size Exact-RLP INDUCTWISE RLP GKC Exact-RLP INDUCTWISE RLP GKC

300 14.30 74.34 4.09 18.99 2.95 11.61 1.02 6.61
600 76.21 422.00 16.28 77.32 11.61 46.20 2.36 15.38

900 244.14 1133.40 33.21 162.08 26.03 103.84 4.09 31.68
1200 513.08 3051.10 60.53 312.93 46.20 184.56 6.16 52.22

1500 827.50 4682.00 92.16 813.00 72.14 288.24 7.60 86.00

US 8,745,563 B2
9

It can be seen that for a circuit consisting of 1200 conduc-
tors, RLP is about nine times faster than the Exact-RLP, and
fifty times faster than INDUCTWISE. The GKC algorithm is
about twice as fast as the Exact-RLP, and ten times faster than
INDUCTWISE. The Exact-RLP is about six times as fast as
INDUCTWISE. With larger circuit sizes, the advantage of
RLP over INDUCTWISE continues to grow, while the Exact-
RLP and GKC algorithms have an advantage over INDUCT-
WISE that grows slightly. An explanation for the slower per-
formance of INDUCTWISE compared to Exact-RLP is that
the number of variables with the latter algorithm is one-half as
that with the former. The same trends are observed with
memory requirements.

VLSI interconnect structures with non linear devices can
also be analyzed using the Modified Nodal Analysis (MNA)
formulation, yielding equations of the form

10
Here Cvv denotes the sub-matrix of the capacitance matrix
that changes amid the simulation, while all other sub-matrices
remain constant. The matrix Cvv captures the drain, gate and
bulk capacitances of all devices, which are voltage-depen-

15 dent, while C, and Cam, are the capacitance matrices that
arise from interconnects and are hence constant.

For typical interconnect structures, the above decomposi-
tion allows us to manipulate the MNA equations (10) and
(11):

20

10
We begin by decomposing C, A, and A as:

CCC

5 	
C— ~ C'C CvvA

T —~ AzIAr— ~ Az

-[°1-=- VVCI

Cx + Cz = b, 	 (9)

where

AT

C— ~ —A, 0 J' C— ~ 0 L1' x— ~ it

b= ~
AT I,+I„ a

0 	
1,Cj=AgR—'Ag,andC=A cT CA c .

R denotes the resistance matrix. The matrices 9 , L and C are
the conductance, inductance and capacitance matrices
respectively, with corresponding adjacency matrices A g, Ai
and A,. IS is the current source vector with adjacency matrix
A,, and v„ and i i are the node voltages and inductor currents
respectively.

Vector, I„ i captures the effect of non-linear loads and
depends on the node voltages as I„, -f(v„). f is a function
which varies depending on the load characteristics and in
general can be a non-linear function.

Utilizing the trapezoidal method to numerically solve (9)
requires the solution of a set of linear and non-linear equa-
tions:

cc +, - c c 	bk+' + b 	 (1 0)

~ 2 + hid 	~ 2 h ~ + 	2

and

,,I I I = f (vn+i). 	 (11)

The nonlinearity in the above set of equations can be handled
by the standard Newton-Raphson technique of linearizing
(11) and iterating until convergence: Equation (10) is a linear
equation of the form L(x)O, where we have omitted the
iteration index k for simplicity. Equation (11) is a nonlinear
equation of the form g(x) -O. Let g(x)-G(x) be a linear
approximation of g(x), linearized around some x -xo . Then,
simultaneously solving L(x)-O and G(x)-O yields numerical
values for x and hence v,,. These values are then used to obtain
a new linear approximation g(x)-G„ eW(x), and the process is
repeated until convergence. A good choice of the point x o for
the initial linearization at the kth time-step is given by the
value of v„ from the previous time-step.

A direct implementation of this algorithm requires
0(pgnr 3) operations, where is the number of time steps, qis
the maximum number of Newton-Raphson iterations in each
time step, and n, -3N.

~ h +
R
 + 4A l P Aria+ i = (h — R — 4A i P~~Ai~ ia +Aivk 	+ 	

(12)

X 	 r

25 	4AiPccA (~s
+i

+Is) — A,PccC_(vk+i— vv)+ 22 (vv+i
+vv),

vk+i = 	 (13)

v~ —
2

P~~ Az(ia
+i
 +)+ 2P_A (Is

+i
 +Js) — P~~ C_(vv

+i — vy),

30 	 h (14)
C"Vk

+
l = C"Vk - 2A 2 (~'

+ 1 +)+

2 A z US
+i

 +
I
s) — Cvv (v

k+i _ vk) +h (w+i + I'),

[v+i = f (vv+i). 35 	 (15)

Here r denotes the size of interconnect structure connected
directly to non linear circuit, and given 1=N-r we note that

40 	C_ R " C ~R x'

P,,-C,,- r is the inverse capacitance matrix, and A is the
adjacency matrix of the circuit. A is obtained by first adding
Ag andA, and then removing zero columns (these correspond
to intermediate nodes, representing the connection of a resis-

45 tance to an inductance).

Thus far, the analysis is similar to that of the linear ele-
ments structures described above, with the major difference
being the addition of (14) and (15), which account for the
nonlinear elements. We will show here how the linear tech-

5o niques can be extended to handle the case when nonlinear
elements are present.

For future reference, we will call the technique of directly
solving (12), (13), (14), and (15) as the "Exact-RLP" algo-
rithm. It can be shown that the computational complexity of

55 the Exact-RLP algorithm is 0(13 +pq(12 +r 3)) . For large VLSI
interconnect structures we have 1»r, reducing the complex-
ity to 0(13 +pq(1 2)).

We now turn to the fast solution of equations (12) through
(15). Recall that the nonlinear equation (15) is handled via the

6o Newton-Raphson technique. This requires, at each time step,
linearizing (15) and substituting it into (14). The resulting set
of linear equations have very specific structure:

Equations (12) and (13) are of the form Ax=b where A is
fixed (does not change with the time-step). Moreover,

65 	A-r is typically approximately sparse.
Equation (14) (after the substitution of the linearized (15))

is again of the form Ax=b, where the matrix A is

US 8,745,563 B2
11

obtained by adding Cvv and the coefficient of the first-
order terms in the linearized equation (15). Recall that
the matrix Cvv captures the drain, gate and bulk capaci-
tances of all devices . It also contains the interconnect
coupling capacitances between gates and drains of dif-
ferent non-linear devices in the circuit. As each non-
linear device is connected to only a few nodes and the
capacitive effects of interconnects are localized, the A
matrix is observed to be sparse in practice. Note that A
changes with each Newton -Raphson iteration and with
the time-step.

Thus the key computational problem is the solution of a
sparse time-varying set of linear equations, coupled with a
large fixed system of linear equations Ax=b with A` being
sparse.

Krylov subspace methods have been shown to work
extremely well for sparse time-varying linear equations. Spe-
cifically, the GMRES (Generalized Minimum Residual)
method of Saad and Schultz allows the efficient solution of a
sparse, possibly non-symmetric, linear system to within a
pre-specified tolerance . This method performs a directional
search along the orthogonal Amoldi vectors which span the
Krylov subspace of A. That is , given an initial guess xo and
corresponding residual r o=b-Axo , orthogonal vectors {q l ,
qz, qm } are generated with the property that they span S m ,
the solution search space at iteration m.

& = xp + span{ro, Aro, ... , A'rpl 	 (16)

= xp +K(A, ro, m)

c span{it, i2 ... , q. 1.

These vectors are chosen according to the Amoldi itera-
tion: AQ_-Qm+,Hm where Q_-Iqt , q21 qm } is orthogonal
and H_ERm+"- is an upper Heisenberg matrix.

For these methods the choice of a preconditioner matrix M,
which is an approximation of A, can greatly affect the con-
vergence. A good preconditioner should have the following
two properties:

M-tA=I.
It must accommodate a fast solution to an equation of the

form Mz-c for a general c.
FIG. 9 depicts the sparsity structure of the A matrix for a

circuit example of parallel wires driving a bank of inverters.
For such a sparsity structure , an appropriate choice of the
preconditioner could be of the form as shown in FIG. 10.
Although we have chosen a circuit with only inverters for
simplicity, a more complicated circuit structure would simply
distribute the entries around the diagonal and off-diagonal
bands and lead to possibly more off diagonal bands. To see
this, consider an extreme case where the circuit under con-
sideration has only non-linear devices and does not comprise
of interconnects . In this case the sparsity pattern of the A
matrix is as shown in FIG. 11. Therefore, the chosen precon-
ditioner would encompass not only the sparsity structure
shown in FIG. 9 but also other sparsity patterns that might
arise with the analysis of more complicated non-linear
devices. Correspondingly the structure of the preconditioner
(see FIG. 10) would have additional bands.

Matrices of the form shown in FIG. 10 have the following
two properties which make them an ideal choice for precon-
ditioner.

The inverses of the preconditioner matrix can be computed
efficiently in linear time, O(r) (r denotes the size of

12
interconnect structure directly connected to non-linear
devices), by exploiting the Hadamard product formula-
tion.

It can also be shown that this formulation facilitates the fast
5 matrix-vector products , again in linear time (O(r)),

which arise while solving linear systems of equations
with the preconditioner matrix.

A simple example which best illustrates these advantages

10
is a symmetric tridiagonal matrix.

a, — bi (17)

—bi a2 — b2

B 15
— bn 2 a 1 — bn 1

— ba-1 a„

20 The inverse of B can be represented compactly as a Hadamard
product of two matrices, which are defined as follows:

U1 U1 	... U1 V1 V1 	... V„ (18)

U1 u2 	... u2 V2 V2 	... Vn
25 	B-1 =

~ . ° ~ .

--
u1 u2 	.. u„

V„ V„ 	.. V„

--------------- U --------------------- V

30 There exists an explicit formula to compute the sequences
{u}, {v} efficiently in O(n) operations. In this case, if we are
interested in solving a linear system of equations By -c, we
only need to concern ourselves with the matrix-vector prod-

35 uct B- 'c-y. This computation can also be performed effi-
ciently in O(n) computations as outlined below:

[-1 	 1 	
(19)

Pu. = L UjCj, P, = L VjCj, i = 1, ... , n

40 	 .i=1 	 .i=1

Y1 =u1Pn'

Y; = V; P.,_1 + uj Pv, , i = 2, ... , n.

45
The above formulation for a tridiagonal matrix could be eas-
ily extended to handle the more general case when the pre-
conditioner matrix is a zero padded block tridiagonal matrix
(matrix with zero diagonals inserted between the main diago-

50 nal and the non-zero super -diagonal and sub-diagonal of
tridiagonal matrix) as in FIG. 10. Elementary row and column
block permutations could be performed on such a matrix to
reduce it into a block tridiagonal matrix. This has been shown
with a small example as below.

55

a, 0 —bt 0 	 (20) and (21)

0 a2 0 —b2
e-

—b i 0 a3 0

60 	 0 —b2 0 a4

at —bi 0 0

—bi a2 0 0 	
T P

0 0 a3 —b2 	'

0 0 —b2 a4
65 X

US 8,745,563 B2
14

To proceed, we rewrite (12) and (13) as

is+l=X—l Yia+X—l Aly'+4X ' AiP_A (ls+l+ls)— 	
(23)

5
A

X —I AIP_C_(vv
+l _vy)+ 2

2
(vv

+l
+vv),

X
l A1Vc

+l =X 1 A1vk—
X —i AI2PccA2

T
(ia

+1 +ia)+ 	 (24)

10 	 h 	1 	T k+1 	k 	1 	 k+l — k
ZX AIPccAuUs + ~s) — X AIP

cc
Cw(vv 	

V).

13
-continued

where

1 0 0 0

0 0 1 0
P-

0 1 0 0

0 0 0 1

Hence,

ul 0 ul 0 	v l 0 V3 0 	 (22)

0 w2 0 wz 	0 Vz 0 V4
s-1 = PX- lPT = 	 o

ul 0 u3 0 	V3 0 V3 0

0 uz 0 u4 	0 V4 0 V4
----------------------- ---------------------- U 	 V

We have not included block matrices for simplicity of pre-
sentation , however the zero padded block tridiagonal case is
a natural extension of the above example. All the entries in
U,V matrices have to be now replaced by blocks and accord-
ingly the row and column permutations would be replaced by
their block counterparts with an identity matrix of appropriate
size replacing the `ones' in the P matrix. Table 4 gives the
comparison for Incomplete-LU preconditioner and the zero-
padded (Z-Pad) preconditioner . Simulations were done on
circuits consisting of busses with parallel conductors driving
bank of inverters. `Size' denotes the number of non-linear
devices. All the results are reported as a ratio of run-time and
iteration -count (number of iterations for the solution to con-
verge to within a tolerance of I e-10) of Z-Pad to the Incom-
plete-LU preconditioner. As can be seen from Table 4, Z-Pad
offers a substantial improvement in run time as compared to
the Incomplete-LU preconditioner.

TABLE 4

Preconditioner

Size

400 	800 	1600 	3200

Runtime 	.44 	.42 	.42 	.43
Iterations 	5110 	5110 	5110 	5110

We now turn to the solution of equations (12) and (13). As
mentioned earlier, these equations reduce to the form Ax -b
with a constant, approximately sparse A - '. A (corresponding
to X in (12) is composed of L, R and P. Each of these matrices
has a sparse inverse for typical VLSI interconnects which
then leads to a approximately sparse A` (Note that this argu-
ment is used for motivating the sparsity inherent in A -1 and
cannot be used as a theoretical proof for the same). In addition
this sparsity has a regular pattern which can be explained on
the basis of how inductance and capacitance matrices are
extracted. The distributed RLC effects of VLSI interconnects
can be modeled by dividing conductors into small subsets of
segments, each of which are aligned . Each of these subsets
leads to a sparsity pattern (corresponding to a band in A`).
All the effects when summed up lead to a A -1 matrix that has
a regular sparsity pattern. Window selection algorithm can
then be employed to find out the sparsity pattern in A - '. It has
been recognized in earlier work that this property (sparsity)
yields enormous computational savings; it has been shown
that an approximate implementation of the Exact -RLP algo-
rithm, referred to simply as the "RLP algorithm " provides an
order-of-magnitude in computational savings with little sac-
rifice in simulation accuracy.

Although X is a dense matrix, X -1 turns out to be an approxi-
mately sparse matrix. Moreover the matrices X -1 Y, X-lAl ,

15 X
-IA,P_A, j T X-IA,P,,C_ are also approximately sparse.

This information can be used to reduce the computation sig-
nificantly by noting that each step of trapezoidal integration
now requires only sparse vector multiplications . Solving
sparse (23) and (24) along with (15) and (16) is termed as the

20
RLP algorithm (SASIMI). To analyze the computational sav-
ing of the approximate algorithm over the Exact-RLP algo-
rithm, we denote "sparsity index" of a matrix A as ratio of the
number of entries of A with absolute value less than e to the
total number of entries. The computation required for each

25 iteration of (23) and (24) is then 0((1 _V)12), where v is the
minimum of the sparsity indices the matrices X -1 Y, X-lAl ,
X-IA,P_A, j T X-IA,P,,C_. FIG. 12 provides the average
sparsity for the matrices for a system with parallel conductors
driving a bank of inverters. The sizes in consideration are 100,

30
200 , 500 and 1000 . On top of this the computation time of can
be reduced to O(1) by using the windowing techniques (details
in [16]). Hence the computational complexity of RLP is O(pq
(I -v)12) as compared to O(pgn 1 3) for the MNA approach.

35 We implemented the Exact-RLP and RLP (SASIMI) algo-
rithms in C++. A commercially available version of SPICE
with significant speed-up over the public-domain SPICE has
been used for reporting all results with SPICE. Simulations
were done on circuits consisting of busses with parallel con-

40
ductors driving bank of inverters, with wires of length I mm,
cross section I µmx I µm , and with a wire separation of I µm.
A periodic IV square wave with rise and fall times of 6 ps
each was applied to the first signal with a time period of 240
ps. All the other lines were assumed to be quiet. For eachwire,

45 the drive resistance was 10Q. A time step of 0.15 ps was taken
and the simulation was performed over 30 ps (or 200 time
steps). For the inverters the W/L ratio of NMOS and PMOS
were taken to be 0.42 µm/0.25 µm and 1.26 µm/0.25 µm
respectively.

In order to explore the effect of the number of non-linear
50 elements relative to the total , three cases were considered.

With p denoting the ratio of the number of linear elements to
that of non-linear elements, the experiments were performed
for p equaling 5, 20 and 50 . The number of linear elements in
the following results is denoted by a.

55 	We first present results comparing the accuracy in simulat-
ing the voltage waveforms at the far end of the first line (after
the inverter load). The RMSE is again use for comparing the
simulations , defined here as

60

Y' (v; - vs)'

V

65

where v and v denote the waveforms obtained from Exact-
RLP and SASIMI respectively.

US 8,745,563 B2
15

Table 5 presents a summary of the results from the study of
simulation accuracy. It can be seen that the simulation accu-
racy of the Exact-RLP algorithm is almost identical to that of
SPICE, while the SASIMI has a marginally inferior perfor-
mance as measured by the RMSE. The error values for
SASIMI are compared simply with the Exact-RLP as it had
the same accuracy as SPICE results for all the experiments
run. A plot of the voltage waveforms at the far end of the
active line, obtained from SPICE, Exact-RLP and SASIMI
algorithms, is shown in FIG. 13. (The number of conductors
in this simulation example is 200.) There is almost no detect-
able simulation error between the SASIMI, Exact-RLP and
SPICE waveforms over 200 time steps. To give a better pic-
ture, the accuracy results reported are for a larger simulation
time of 2200 time steps.

TABLE 5

16
The Hamiltonian of a valley b for electrons, associated with

the device under consideration, is as follows:

5 	 fi d I d 	d(I d ~ d I d 	 (25)
Hb(r)=- 2 dx ~ medx ~ + dy medy +dZ ~W,T +V(r),

dry, (ri, r2, kz, E)Ce(ri, r2, kz, E) = &I - r2),

b

where (mxb, myb, mzb) are the components of effective mass in
10 valley b. The equation of motion for the retarded Green's

function (G') and less-than Green's function (G`) are:

2kzz 	

(26)
E 2m - Hb(rt) Cart, rz, kz, -

15

RMSE comparison. 	 fi2kz 	 (27)

a
E 2m - Hb(rt) Cart, rz, kz, -

p=5 	p=20 	 p=50 20

100 	.0054 	.0053 	 .0088 	 J dry' (ri, r2 , kz , E)Cb(ri, r2, k z , E) _
200 	.0078 	.0052 	 .0071 	 b
500 	.0006 	.0022 	 .0001

1000 	.0003 	.0005 	 .0004 	 f dr~ (ri , r2 , kz, E)Gb (r i , r2 , kz , E).
2000 	.0003 	.0004 	 .0004 	 25

b

We now turn to a comparison of the computational require-
ments between Exact-RLP, SASIMI and SPICE. Table 6 sum-
marizes the findings. For a fair comparison, our total simula-
tion time is compared against the transient simulation time for
SPICE (i.e we have not included any of the error check or set
up time for SPICE). As can be seen from the table, SASIMI
outperforms the Exact-RLP algorithm and SPICE. For the
case of 500 conductors with p=50, the Exact-RLP algorithm
is 390 times as fast compared to SPICE. SASIMI is about
1400 times faster as compared to SPICE, and more than three
times faster than Exact-RLP. As can be seen, the computa-
tional savings increase as the ratio of linear to non-linear
elements is increased from 5 to 50. The savings also increase
with increase in the size of the problem considered. The
computational efficiency of the SASIMI can be explained on
the use of sparsity-aware algorithms for both the linear and
non-linear parts of the problem.

TABLE 6

Run time (in seconds) comparisons

Given Gr and G`, the density of states and the charge density
can be written as a sum of contributions from the individual

30 valleys,

N(r, kz, E) _ 	Nb(r, kz, E) _ - Im[Ci (r, r, kz, E)], 	
(28)

b 35

P(r, kz, E) _ 	Pb(r, kz, E) = - i[Qb(r, r, kz, E)]. 	 (29)
b

The self-consistent solution of the Green's function is
40 often the most time intensive step in the simulation of electron

density. It was shown by Svizhenko et al. in "Two-dimen-
sional quantum mechanical modeling of nanotransistors,"
Journal of Applied Physics, 91(4):2343-2354, 2002, hereby

p=5 p=20 p=50

a SPICE Exact-RLP SASIMI SPICE Exact-RLP SASIMI SPICE Exact-RLP SASIMI

100 11.96 1.34 1.26 13.73 .27 .21 13.54 .15 .12
200 100.25 3.28 2.68 68.72 .64 .28 67.68 .55 .22
500 3590.12 17.13 4.872 1919.21 13.47 3.01 1790.67 4.58 1.30

1000 >12 hrs 87.75 22.71 >10 hrs 79.07 16.49 >10 hrs 77.56 15.20
2000 >1 day 545.6 78.06 >1 day 526.23 59.33 >1 day 408.54 56.05

The existing methods for finding the inverse of a block
tridiagonal matrix suffer from being either numerically
unstable or heavily memory intensive and hence impractical
for problems of very large size (e.g. 10 6x106).

Consider the two-dimensional model of a nano-scale tran-
sistor, shown in FIG. 14. The body of the transistor is pro-
jected onto a two-dimensional non-uniform spatial grid of
dimension NxxNy, where Nx(Ny) denote the number of grid
points along the depth (length) of the device. A brief review of
the governing physics of this device is provided here.

incorporated by reference, that the approximate block tridi-
agonal structure of the left-hand side in (26) and (27) facili-

60 tates the efficient calculation of the electron density. Specifi-
cally, it was demonstrated that only the diagonal entries of G"
are needed to be computed for such a simulation.

Svizhenko et al. showed that the problem of computing
65 electron densities in a nanotransistor can be reduced to find-

ing the diagonal blocks of G', where AG'-I and A is a block
tridiagonal matrix of the form

US 8,745,563 B2
17 	 18

for large problem sizes. This will preclude it from being
Al -Bl 	 (30) 	directly implemented to solve these problems. Alternatively,

-B; A 2 	-B2 	 the divide and conquer algorithm described below avoids
A =

	

	 these numerical issues by only handling manageable problem

-BN
5

Y
 - 2 A NY - 1 -BN Y - 1 	 sizes at each step.

	

-BN Y -1 A NY 	 In the most simple case, the block tri diagonal matrix, A can
be decomposed into two sub-matrices connected by what we

where each A,, B ye C N xN Thus AE C NyN- xNyN- with NY
 10 will call a bridge matrix. This concept is illustrated below:

diagonal blocks of size Nx each. We will denote A compactly
as A=trid(A,,B,).

	

The algorithm in Svizhenko et al. calculates the diagonal 	
A = n + xY,

	

blocks (D,) of A-1 in the following manner. 	
15

Gl=Al-', 	
Sz

G,+l=(,4i,,—BsG,Bs)—1, i=1, 2, ... , AY-1,

DNY GNY, 	
20

D,=G,+G,B,D,+,B,G;, i=NY 1, NY -2,..., 1. 	 (31)

The time complexity of this algorithm was shown to be
O(Nx3Ny), with a memory requirement of O(Nx3Ny).

Alternatively, the inverse of a block tridiagonal matrix can 25
be computed explicitly by exploiting the Hadamard product
formulation . When 113 , 1 are non-singular , A is said to be
proper . In this case there exists two (non-unique) sequences
of matrices {U,}, {V,} such that for j>_i, (A -l)~ U~VjT.

30
Hence, A` can be written as

Al -Bi

T
—Bl A 2 —B2

.Sl =

-BT 2 	A i-1 -B;—1

-Br
l Ai

A+l -B +,

-B
r
;+l A;+2 -B;+2

S2 =
—BTY — 2 ANY — 1 —BNY — 1

-BT
NY -1 A NY

0 	0
Ul V1 	Ul V2 	Ul V3 	... 	Ul VNY
V2Ul 	Ul 	U2 V3 	... 	U2 VNY 35 _g 	0 0

A l = V3 Ui 	V3 UZ 	U3 V3 	... 	U3 VNY
X-

0 	-BT
Y-

0

VNY U1 	VNY U2 	VNY U3 	... 	UNY VNY 0 	0

40

0 1 	... 0

1 0 ... 0

Notice that the block tridiagonal structure is preserved in
each sub-problem, and they are joined by the N xxNx bridge
matrix B,. The structure of S, and S z facilitates the use of

45 Hadamard based methods (32) for determiningthe solutionof
each sub-problem. However, the question then becomes how
to determine the global solution from each sub-problem solu-
tion and their corresponding bridge. This problem can be

5o resolved by the use of a fundamental result of linear algebra.
The matrix inversion lemma describes the effect of a low rank

v.T (v. +lTA£+l — v+2TB,+lT), i=NY 2, ... , 2,1. 	 (32) 	correction term on the inverse of a matrix, and can be used in

I denotes identity matrix of appropriate size 	 the following way:

The matrices encountered in the simulation of nanotrans- 55
istors enjoy the property that the diagonal blocks {A,} are
tridiagonal while the off-diagonal blocks 1 13 , 1 are diagonal
(this is due to the tight-binding approximation of the Hamil-
tonian). The complexity of the above parameterization is then
reduced to O(NYNx2+Nx3). It is worthwhile to note here that 60
the complexity of algorithm in (31), which was given to be
O(NyNx3), does not change based upon these properties (al-
though the actual run time is reduced). Therefore, the reduced
complexity of the Hadamard formulation makes it an ideal 65
choice for the solution of this problem. However, it has been
shown that the above recursions can be numerically unstable

The U and V sequences can be efficiently computed in
O(NYNx3) operations in the following manner:

Ul 4 U2—B1 1A 1,

U+l =BY l (A,U B=-I TU—l), i=2, ... , NY-1,

7 	 7 	—1
VNY — (AN Y UNY BN Y 1 UNY 1) ,

VNY 1
7

 = VNY
7
'4NYBNY I

-1
 ,

A-1 =(A+XY)

=A-1 - (A l X)(I+YA l X) l(YA l)

where,

—1
X 	

(— ClB;) 	0
A -

	

0 	(-C2Bi ,

	

_l —1 	 I 	-S2 1(1, 1)BT —
1

(I+YA X) _ l

	

-Si l (i,i)B ; 	I

(33)

US 8,745,563 B2
19 	 20

-continued 	 -continued

YA i =
(Ci) 0

5 	 ...

[61
 VT] ... [UiVm]

Here, C,=S, -i (:,i) and C2-S2-'(:I I) denotes the last (first)

block columns of S i -i (Sz-i) respectively. 	 10

Although (33) can be used directly to solve the problem
described above, its lack of computational efficiency pre-
cludes its use in this case. However, it is important to note that
the adjustment term, (I+YA- 'X)-i , depends only on the cor-
ner blocks of the inverses of the sub-problems. This observa-
tion provides the basis fora formulation of the solution for the
more general case. Specifically, the divide and conquer algo-
rithm of the present invention addresses the issue of how to
combine multiple sub-problem solutions in both a memory
and computationally efficient manner.

An overview of the divide and conquer algorithm is pro-
vided here.

The procedure begins with separating the block tridiagonal
matrix A into D subproblems, each joined by a bridge matrix.
The procedure presented previously motivates the formula-
tion of the global solution by combining the sub-problems in
a simple radix 2 fashion. However, this method offers no
improvement in terms of memory consumption and is com-
putationally intensive. Alternatively, matrix maps are created
to capture the effect of each combining step without perform-
ing all of the associated computation. Adjustments to the
matrix maps at each combining stage are not constant and
must be modified to parallel the procedure above. These maps
can then be used in the final stage to transform the subproblem
solutions into the global solution.

Each combining step in the divide and conquer algorithm
will have an associated entry in the "job" list pointing to the
first and last sub-problems along with the corresponding
bridge point. For example, (1-2,3-4) describes the action of
combining joined sub-problems I and 2 (S,_ 2) to joined sub-
problems 3 and 4 (S3_4) by use of the bridge matrix between
problems 2 and 3. The corresponding entry in the job list
would be of the form: [start, stop, bridge]=[1, 4, 2].

This formulation lends itself directly to parallel implemen-
tation, since computations associated with non-overlapping
combinations can be farmed out across multiple systems.

To model the effect of any combining stage in the job list, 55
it is necessary to know the corner block elements from the
inverse of each combined sub-problem. This process can be
easily illustrated by a simple example. Suppose once again

T 	T 	 (34) Z,= -BT) JU T

Z2 = -B-1 0nVn

The matrix maps associated with the Upper sub-problems (S,
and Sz) are updated in the following manner.

M6 M3 7(ADJ12B„+1)M4— M6

M7_ M4 7(ADJ12B„+1)M3— M7

M$ -M4 7(4DJ12B„+1)M4— M8 (35)

where n=size (S,)+size (S 2), and m=size (S 3)+size (S4).
It would be impractical to recalculate the inverse of each

joined problem for each combining stage. Alternatively,
15 matrix maps areusedto efficiently produce the required block

entries.
Matrix maps are created to produce the cumulative effect of

each combining step associated with a particular sub-prob-
20 lem. There are a total of eight NxxN, matrix maps 1M,1 for

each sub-problem. The process of updating matrix maps can
be broken down into two categories: Adjustments to Upper
sub-problem and those to Lower sub-problems, the distinc-
tion being their location with respect to the bridge point. This

25 procedure will be illustrated using the above example. The
"adjustment" matrix, AD7, for the combining step is defined
as follows:

30

35 	 P=Y-Z2Z1)-i,

	

 (ADJ

11
ADJ = 1 + PZ2
	P~ P - ADJ21 ADJzz

40

45 	M,+((J,V 7ADJ12B,)M,—M i

M,((J,fl, 7ADJ1,B„+i)M4— MI

(CI f _ADJ12B„+i)M,—Ma

50 	(CI P 7ADJ22B„+i)M4_M4

Ms M3 7(ADJ12B„+1)M3— M5

that the combination stage is (1-2,3-4), let Q,=S,_ z 	Those associated with the Lower sub-problems (S 3 and S4)

and Q2-S3-4. The corner block elements of Q, -i and Q2_' can 60 are updated in the following manner:

be found using the parameterization given in (32). 	 (u, v TADJ„B„+1 T)M,—M,

(U,fl, 7ADJ„Bn+1T)M2—M2

t

0 Q
Q

2 i
65 	M3 +(fl_ 01 7ADJ21B„+1 T)M1 — M3

M4+(f m 01TADJ21B„+1T)M2—M4

US 8,745,563 B2
21

Ms M1 7(ADJ21B„+1 T)M1 -Ms

M6_M1 T(ADJ21B„+1 T)M2-M6

M1_ M27(ADJ21B_1T)M1-M,

Ms M2 7(ADJ21B„+1 T)M2-Ms (36)

The above procedure for modifying the matrix maps is
repeated for each entry in the job list. In the final stage the
matrix maps are used to generate the diagonal blocks of A - '.
It is important to note that this scheme fits nicely into a
parallel framework due to the fact that systems handling
Upper or Lower sub-problems would only have to trade the
limited amount of information in (34) to modify the matrix
maps they are governing.

22
FIG. 15 shows the ratio of memory consumption of the

algorithm in Svizhenko et al. as compared to the divide and
conquer algorithm for varying number of blocks per division
(sub-problem size). FIG. 16 shows the same ratio for varying

5 number of divisions.

While the invention has been illustrated and described in
detail in the drawings and foregoing description , the same is
to be considered as illustrative and not restrictive in character,

10 it being understood that only the preferred embodiment has
been shown and described and that all changes and modifi-
cations that come within the spirit of the invention are desired
to be protected.

15 	
What is claimed is:

1. A system for simulating operation of a VLSI intercon-
nect structure having capacitive and inductive coupling
between nodes thereof, comprising:

• processor; and

• memory, said processor configured to:

obtaining a matrix X and a matrixY containing different
combinations of passive circuit element values for
said interconnect structure, said element values for
each matrix including inductance L and inverse
capacitance P,

obtaining an adjacency matrix A associated with said
interconnect structure,

storing said matrices X, Y, and A in said memory, and

performing numerical integration to solve first and sec-
ond equations each including as a factor product of
inverse said matrix X (X -1) and at least one other
matrix, said first equation including X -1Y, X-1A, and
X-1 P and said second equation including X -1A and
X-1 P.

2. The system of claim 1, wherein said matrices X and Y
4o each contain resistance values in addition to L and P.

3. The system of claim 2, wherein said first equation is
substantially of the form,

Pseudo-Code
20

1. For each sub-problem in (1,2,...,D]
• Determine corner blocks from inverse of sub-problem
• Associate bridge matrix (excluding problem D)
• Initialize matrix maps

2. Generate list of sub-problem combinations radix 2
3. Adjust mappings for each combining step 	 25
4. Compute diagonal elements for each division
5. Apply matrix maps to transform sub-problem solutions to the global
solution

The time complexity of the divide and conquer algorithm is 30
O(N,'Ny+Nx3 D 1092 D) where a is defined to be the order
associated with a NxxNx matrix multiplication (typically
a=2.7). The memory consumption is

35

N, 'N
O

D y
+NxD.

The divide and conquer algorithm, along with the algo- 45
rithm in Svizhenko et al. have been implemented , in Matlab,
on a single 32-bit x86 Linux workstation. All results reported
are for test cases on a MIT well-tempered 25 nm device-like
structure.

Table 7 shows the run-time comparison of the two algo- 50
rithms across the cases: N, -100 , Ny 3,000-80 , 000. Notice
that the algorithm given in Svizhenko et al. was unable to
perform past the case N Y-1 1,000 due to memory restrictions.
However, the divide and conquer algorithm was able to
handle these cases without encountering memory overflow.

TABLE 7

Run time (min) comparison

Size = N_ *

ik+1 = X -1 Y~ +X-lAyk + 4X-lAP(Ik+l +Is),

where v„ and i t are node voltages and inductor currents,
respectively, A is an adjacency matrix for the circuit, and

0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1.0 	1.1 	2.0 	4.0 	8.0

Divide and Conquer Algorithm 	5.38 6.66 8.10 9.41 11.13 12.25 13.75 14.99 27.59 58.86 107.0

Algorithm in Svizhenko et al. 	1.22 1.51 	1.82 2.12 	2.43 2.72 3.01 3.33

US 8,745,563 B2
23 	 24

IS is a current source vector, and wherein said second
equation is substantially of the form

X —'Av k,+i = X —'Av k,— ZX — ' APAT (ia+i +ia)+ ZX —' AP(ls+i +I,)

	8745563-p0001.pdf
	8745563-p0002.pdf
	8745563-p0003.pdf
	8745563-p0004.pdf
	8745563-p0005.pdf
	8745563-p0006.pdf
	8745563-p0007.pdf
	8745563-p0008.pdf
	8745563-p0009.pdf
	8745563-p0010.pdf
	8745563-p0011.pdf
	8745563-p0012.pdf
	8745563-p0013.pdf
	8745563-p0014.pdf
	8745563-p0015.pdf
	8745563-p0016.pdf
	8745563-p0017.pdf
	8745563-p0018.pdf
	8745563-p0019.pdf
	8745563-p0020.pdf
	8745563-p0021.pdf
	8745563-p0022.pdf
	8745563-p0023.pdf
	8745563-p0024.pdf
	8745563-p0025.pdf
	8745563-p0026.pdf
	8745563-p0027.pdf
	8745563-p0028.pdf
	8745563-p0029.pdf
	8745563-p0030.pdf

