
Purdue University
Purdue e-Pubs

Birck and NCN Publications Birck Nanotechnology Center

3-29-2011

Distributed NEGF Algorithms for the Simulation
of Nanoelectronic Devices with Scattering
Stephen Cauley
Purdue University

Mathieu Luisier
Purdue University

Venkataramanan Balakrishnan
Purdue University

Gerhard Klimeck
Purdue University, gekco@purdue.edu

Cheng-Kok Koh
Purdue University

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub

Part of the Nanoscience and Nanotechnology Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Cauley, Stephen; Luisier, Mathieu; Balakrishnan, Venkataramanan; Klimeck, Gerhard; and Koh, Cheng-Kok, "Distributed NEGF
Algorithms for the Simulation of Nanoelectronic Devices with Scattering" (2011). Birck and NCN Publications. Paper 737.
http://dx.doi.org/10.1063/1.3624612

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4952191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fnanopub%2F737&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F737&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nano?utm_source=docs.lib.purdue.edu%2Fnanopub%2F737&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F737&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=docs.lib.purdue.edu%2Fnanopub%2F737&utm_medium=PDF&utm_campaign=PDFCoverPages

ar
X

iv
:1

10
3.

57
82

v1
 [

co
nd

-m
at

.m
es

-h
al

l]
 2

9
M

ar
 2

01
1

Distributed NEGF Algorithms for the Simulation
of Nanoelectronic Devices with Scattering

Stephen Cauley, Mathieu Luisier, Venkataramanan Balakrishnan,
Gerhard Klimeck, and Cheng-Kok Koh

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-2035

Abstract

Through the Non-Equilibrium Green’s Function (NEGF) formalism, quantum-
scale device simulation can be performed with the inclusion of electron-phonon
scattering. However, the simulation of realistically sized devices under the NEGF
formalism typically requires prohibitive amounts of memory and computation time.
Two of the most demanding computational problems for NEGF simulation involve
mathematical operations with structured matrices called semiseparable matrices.
In this work, we present parallel approaches for these computational problems
which allow for efficient distribution of both memory and computation based upon
the underlying device structure. This is critical when simulating realistically sized
devices due to the aforementioned computational burdens. First, we consider de-
termining a distributed compact representation for the retarded Green’s function
matrix GR. This compact representation is exact and allows for any entry in the
matrix to be generated through the inherent semiseparable structure. The second
parallel operation allows for the computation of electron density and current char-
acteristics for the device. Specifically, matrix products between the distributed rep-
resentation for the semiseparable matrix GR and the self-energy scattering terms
in Σ< produce the less-than Green’s function G<. As an illustration of the compu-
tational efficiency of our approach, we stably generate the mobility for nanowires
with cross-sectional sizes of up to 4.5nm, assuming an atomistic model with scat-
tering.

1 Introduction
In the absence of electron-phonon scattering, the problem of computing density of
states and transmission through the NEGF formalism reduces to a mathematical prob-
lem of finding select entries from the inverse of a typically large and sparse block
tridiagonal matrix. Although there has been research into numerically stable and com-
putationally efficient serial computing algorithms [1], when analyzing certain device
geometries this type of method will result in prohibitive amounts of computation and
memory consumption. In [2] a parallel divide-and-conquer algorithm (PDIV) was
shown to be effective for NEGF based simulations. Two applications were presented,

1

http://arxiv.org/abs/1103.5782v1

the atomistic level simulation of silicon nanowires and the two-dimensional simula-
tion of nanotransistors. Alternative, serial computing, NEGF based approaches such
as [3] rely on specific problem structure (currently not capable of addressing atomistic
models), with computation limitations that again restrict the size of simulation. In ad-
dition, the ability to compute information needed to determine current characteristics
for devices has not been demonstrated with methods such as [3]. The prohibitive com-
putational properties associated with NEGF based simulation has prompted a transition
to wave function based methods, such as those presented in [4]. Given an assumed ba-
sis structure the problem translates from calculating select entries from the inverse of a
matrix to solving large sparse systems of linear equations. This is an attractive alterna-
tive because solving large sparse systems of equations is one of the most well studied
problems in applied mathematics and physics. In addition, popular algorithms such as
UMFPACK [5] and SuperLU [6] have been constructed to algebraically (based solely
on the matrix) exploit problem specific structure in an attempt to minimize the amount
of computation. The performance of these algorithms for the wave function based anal-
ysis of several silicon nanowires has been examined in [7]. However, for many devices
of interest wave function methods are currently unable to address more sophisticated
analyses that involve electron-phonon scattering. Thus, there remains a strong need to
further develop NEGF based algorithms for the simulation of realistically sized devices
considering these general modeling techniques.

When incorporating the effects of scattering into NEGF based simulation, it be-
comes necessary to determine the entire inverse of the coefficient matrix associated
with the device. This substantially increases both the computational and memory re-
quirements. There are a number of theoretical results describing the structure of the
inverses of block tridiagonal and block-banded matrices. Representations for the in-
verses of tridiagonal, banded, and block tridiagonal matrices can be found in [8–13]. It
has been shown that the inverse of a tridiagonal matrix can be compactly represented
by two sequences {ui} and {vi} [14–17]. This result was extended to the cases of block
tridiagonal and banded matrices in [18–20], where the {ui} and {vi} sequences gener-
alized to matrices {Ui} and {Vi}. Matrices that can be represented in this fashion are
more generally known as semiseparable matrices [20, 21]. Typically, the computation
of parameters {ui} and {vi} suffers from numerical instability even for modest-sized
problems [22]. It is well understood that for matrices arising in many physical appli-
cations the {ui} and {vi} sequences grow exponentially [17, 23] with the index i. One
approach that has been successful in ameliorating these problems, for the tridiagonal
case, is the generator approach shown in [24]. Here, ratios for sequential elements of
the {ui} and {vi} sequences are used as the generators for the inverse of a tridiagonal
matrix. Such an approach is numerically stable for matrices of very large sizes. The
extension of this generator approach to the general block-tridiagonal matrices was dis-
cussed by the same authors in [13]. The authors used the block factorization of the
original block-tridiagonal matrix to construct a block Cholesky decomposition of its
inverse.

A generator based approach for inversion, typically referred to as the Recursive
Green’s Function (RGF) algorithm, was introduced in [1] for NEGF based simulation.
It is important to note that the method of [1] requires 3× less memory to compute only
the density of states and transmission (in the absence of scattering), when compared

2

to the complete generator representation. In this work, we extend the approach of [2]
to consider the computation of a distributed generator representation for the inverse
of the block tridiagonal coefficient matrix. We then demonstrate how the distributed
generator representation allows for the efficient computation of the electron density and
current characteristics of the device. Our parallel algorithms facilitate the simulation
of realistically sized devices by utilizing additional computing resources to efficiently
divide both the computation time and memory requirements. As an illustration, we
stably generate the mobility for 4.5nm cross-section nanowires assuming an atomistic
model with scattering.

2 Inverses of Block Tridiagonal Matrices
A block-symmetric matrix K is block tridiagonal if it has the form

K =

A1 −B1
−BT1 A2 −B2

.
−BTNy−2 ANy−1 −BNy−1

−BTNy−1 ANy

, (1)

where each Ai,Bi ∈ RNx×Nx . Thus K ∈ RNyNx×NyNx , with Ny diagonal blocks of size Nx
each. We will use the notation K = tri(A1:Ny ,B1:Ny−1) to represent such a block tridi-
agonal matrix. The NEGF based simulation of nanowires using the sp3d5s∗ atomistic
tight-binding model with electron-phonon scattering has been demonstrated in [25].
The block tridiagonal coefficient matrix for simulation is constructed in the following
way:

K =
(

EI−H−ΣRR−ΣRL−ΣRS
)

.

Here, E is the energy of interest,H is the Hamiltonian containing atomistic interactions,
and ΣRL , ΣRR, and ΣRS are the left and right boundary conditions and self energy scattering
terms respectively. In order to calculate the current characteristics for the device we
must first form the retarded Greens Function using the fact that KGR = I. A standard
numerically stable mathematical representation for the inverse of this block tridiago-
nal matrix is dependent on two sequences of generator matrices {g

R
←−
i },{g

−→R
i }. Here,

the terms R←− and −→R correspond to the forward and backward propagation through the
device. Specifically, we can use the diagonal blocks of the inverse {Di} and the gener-
ators to describe the inverse a block tridiagonal matrix K in the following manner:

3

GR =

D1 D1g
−→R
1 · · · D1

Ny−1
∏
k=1

g
−→R
k

g
R
←−
1 D1 D2 · · · D2

Ny−1
∏
k=2

g
−→R
k

...
...

. . .
...

(
1
∏

k=Ny−1
g
R
←−
k)D1 (

2
∏

k=Ny−1
g
R
←−
k)D2 · · · DNy

. (2)

Where the diagonal blocks of the inverse, Di, and the generator sequences satisfy the
following relationships:

g
R
←−
1 = A−1

1 B1,

g
R
←−
i =

(

Ai−BTi−1g
R
←−
i−1

)−1
Bi, i= 2, . . . ,Ny− 1,

g
−→R
Ny−1 = BNy−1A−1

Ny ,

g
−→R
i = Bi

(

Ai+1 − g
−→R
i+1BTi+1

)−1
, i= Ny− 2, . . . ,1,

D1 =
(

A1 − g
−→R
1 BT1

)−1
,

Di+1 =
(

Ai+1 − g
−→R
i+1BTi+1

)−1(
I+BTi Dig

−→R
i

)

, i= 1, ...,Ny− 2,

DNy = A−1
Ny

(

I+BTNy−1DNy−1g
−→R
Ny−1

)

.

(3)

The time complexity associated with determining the parametrization of GR by the
above approach is O(N3

x Ny), with a memory requirement of O(N2
x Ny).

2.1 Alternative Approach for Determining the Compact Represen-
tation

It is important to note that if the block tridiagonal portion ofGR is known, the generator
sequences g

−→R and g R←− can be extracted directly, i.e. without the use of entries from K
through the generator expressions (3). Examining closely the block tridiagonal portion
of GR we find the following relations:

Dig
−→R
i = Pi =⇒ g

−→R
i = D−1

i Pi, i= 1, . . . ,Ny− 1,

g
R
←−
i Di = Qi =⇒ g

R
←−
i = QiD−1

i , i= 1, . . . ,Ny− 1,
(4)

where Pi denotes the (i, i+1) block entry ofGR andQi denotes the (i+1, i) block entry
ofGR. Therefore, by being able to produce the block tridiagonal portion ofGR we have
all the information that is necessary to compute the compact representation.

4

As was alluded to in Section 1, direct techniques for simulation of realistic devices
often require prohibitive memory and computational requirements. To address these
issues we offer a parallel divide-and-conquer approach in order to construct the com-
pact representation for GR, i.e. the framework allows for the parallel inversion of the
coefficient matrix. Specifically, we introduce an efficient method for computing the
block tridiagonal portion of GR in order to exploit the process demonstrated in (4).

3 Parallel Inversion of Block Tridiagonal Matrices
The compact representation of GR can be computed in a distributed fashion by first
creating several smaller sub-matrices φi. That is, the total number of blocks for the
matrix K are divided as evenly as possible amongst the sub-matrices. After each in-
dividual sub-matrix inverse has been computed they can be combined in a Radix-2
fashion using the matrix inversion lemma from linear algebra. Figure 1 shows both
the decomposition and the two combining levels needed to form the block tridiagonal
portion of GR, assuming K has been divided into four sub-matrices. In general, if K is
separated into p sub-matrices there will be log p combining levels with a total of p−1
combining operations or “steps”. The notation φ−1

i∼ j is introduced to represent the result
of any combining step, through the use of the matrix inversion lemma. For example,
φ−1

1∼2 is the inverse of a matrix comprised of the blocks assigned to both φ1 and φ2. It is
important to note that using the matrix inversion lemma repeatedly to join sub-matrix
inverses will result in a prohibitive amount of memory and computation for large simu-
lation problems. This is due to the fact that at each combining step all entries would be
computed and stored. Thus, the question remains on the most efficient way to produce
the block tridiagonal portion of GR, given this general decomposition scheme for the
matrix K.

In this work, we introduce a mapping scheme to transform compact representations
of smaller matrix inverses into the compact representation of GR. The algorithm is
organized as follows:

• Decompose the block tridiagonal matrix K into p smaller block tridiagonal ma-
trices.

• Assign each sub-matrix to an individual CPU.

• Independently determine the compact representations associated with each sub-
matrix.

• Gather all information that is needed to map the sub-matrix compact representa-
tions into the compact representation for GR.

• Independently apply the mappings to produce a portion of the compact represen-
tation for GR on each CPU.

The procedure described above results in a “distributed compact representation” allow-
ing for reduced memory and computational requirements. Specifically, each CPU will

5

−1φ1~2

−1φ1

−1φ2

−1φ3

−1φ4

K
φ1

φ2

φ3

φ4

−1φ3

−1φ4

−1φ2

−1φ1

−1φ3~4

−1
K

Matrix Maps

Combining Level: 2Combining Level: 1Sub−matrix Inversion Compact RepresentationDecomposition

Figure 1: Decomposition of block tridiagonal matrix K into four sub-matrices, where
the shaded blocks correspond to the bridge matrices. The two combining levels follow
the individual sub-matrix inversions, where φ−1

i∼ j represents the inverse of divisions φi
through φ j from the matrix K. Matrix mappings will be used to capture the combining
effects and allow for the direct computation of the block tridiagonal portion of GR.

eventually be responsible for the elements from both the generator sequences and di-
agonal blocks that correspond to the initial decomposition (e.g. if φ1 is responsible for
blocks 1,2, and 3 from the matrix K, the mappings will allow for the computation of
g
−→R
1...3, g

R
←−
1...3, and D1...3).

In order to derive the mapping relationships needed to produce a distributed com-
pact representation, it is first necessary to analyze how sub-matrix inverses can be
combined to form the complete inverse. Consider the decomposition of the block
tridiagonal matrix K into two block tridiagonal sub-matrices and a correction term,
demonstrated below:

K =

(

φ1
φ2

)

︸ ︷︷ ︸

K̃

+ XY,

φ1 = tri(A1:k,B1:k−1), φ2 = tri(Ak+1:Ny ,Bk+1:Ny−1), and

X =

(

0 · · · −BTk 0 · · · 0
0 · · · 0 −Bk · · · 0

)T
, Y =

(

0 · · · 0 I · · · 0
0 · · · I 0 · · · 0

)

.

Thus, the original block tridiagonal matrix can be decomposed into the sum of a block
diagonal matrix (with its two diagonal blocks themselves being block tridiagonal) and
a correction term parametrized by the Nx×Nx matrix Bk, which we will refer to as the
“bridge matrix”. Using the matrix inversion lemma, we have

GR = (K̃+XY)−1 = K̃−1 − (K̃−1X)
(

I+YK̃−1X
)−1

(YK̃−1),

6

where

K̃−1X =

(

−φ−1
1 (:,k)Bk 0

0 −φ−1
2 (:,1)BTk

)

, (5)

(

I+YK̃−1X
)−1

=

(

I −φ−1
2 (1,1)BTk

−φ−1
1 (k,k)Bk I

)−1
,

YK̃−1 =

(

0 φ−1
2 (:,1)T

φ−1
1 (:,k)T 0

)

,

and φ−1
1 (:,k) and φ−1

2 (:,1) denote respectively the last and first block columns of φ−1
1

and φ−1
2 .

This shows that the entries of K̃−1 are modified through the entries from the first
rows and last columns of φ−1

1 and φ−1
2 , as well as the bridge matrix Bk. Specifically,

since φ1 is before or “above” the bridge point we only need the last column of its in-
verse to reconstructGR. Similarly, since φ2 is after or “below” the bridge point we only
need the first column of its inverse. These observations were noted in [2], where the
authors demonstrated a parallel divide-and-conquer approach to determine the diago-
nal entries for the inverse of block tridiagonal matrices. We begin by generalizing the
method from [2] in order to compute all information necessary to determine the dis-
tributed compact representation ofGR (3). That is, we would like to create a combining
methodology for sub-matrix inverses with two major goals in mind. First, it must al-
low for the calculation of all information that would be required to repeatedly join
sub-matrix inverses, in order to mimic the combining process shown in Figure 1. Sec-
ond, at the final stage of the combining process it must facilitate the computation of the
block tridiagonal portion for the combined inverses. Details pertaining to the parallel
computation of GR are provided in Appendix A. The time complexity of the algorithm
presented isO(N3

x Ny/p+N3
x log p), with memory consumptionO

(

N2
x Ny/p+N2

x
)

. The
distribution of the compact representation is at the foundation of an efficient parallel
method for calculating the less-than Green’s Function G< and greater-than Green’s
Function G>.

4 Parallel Computation of the Less-than Green’s Func-
tion

The parallel inversion algorithm described in Section 3 not only has advantages in
computational and memory efficiency but also facilitates the formulation of a fast, and
highly scalable, parallel matrix multiplication algorithm. This plays an important role
during the simulation process due to the fact that computation of the less-than Green’s
Function requires matrix products with the retarded Green’s Function matrix:

G< = GRΣ<GR∗. (6)

Σ<, which we will refer to as the less-than scattering matrix, is typically assumed to be
a block diagonal matrix. We will demonstrate how the distributed compact representa-

7

tion of the semiseparable matrix GR presented in Section 3 can be used to calculate the
necessary information from G<. Specifically, the electron density for the device will
be calculated through the diagonal entries ofG< and the current characteristics through
the first off-diagonal blocks of G<.

4.1 Mathematical Description
Recall that our initial state for this procedure would assume that portions of the block
tridiaongal (corresponding to the size and location of the divisions) of GR have been
calculated and stored. It is important to note that there are many generator represen-
tations for GR and we would like to select a representation that will facilitate efficient
calculation of G<. For the mathematical operation shown in (6), our starting point will
be describing the kth block row of GR in terms of Di,

(

g
−→R
i

)T
, and g

R
←−
i , the diagonal

blocks and two generator sequences respectively. The following expressions are used
to determine the generators from the block tridiagonal of the semiseparable matrix:

Pi = g
R
←−
i Di+1 ⇒ g

R
←−
i = Pi (Di+1)

−1 ,

Qi =
(

g
−→R
i

)T
Di ⇒

(

g
−→R
i

)T
= Qi (Di)

−1 . (7)

Di, Pi, and Qi, are the diagonal, upper diagonal, and lower diagonal blocks respec-
tively. Thus, the generators

(

g
−→R
i

)T
and g

R
←−
i are used to describe the kth block row of

GR semiseparable matrix in the following way:

GR (k, :) =
(

1
∏

i=k−1

(

g
−→R
i

)T
D1 · · ·

(

g
−→R
k−1

)T
Dk−1 Dk g

R
←−
k Dk+1 · · ·

Ny−1
∏
i=k

g
R
←−
i DNy

)

This generator representation for GR along with the block diagonal structure of Σ< al-
lows for us to express each diagonal block ofG< in terms of recursive sequences. Both
the forward recursive sequence g

−→
<
i and backward recursive sequence g

<
←−
i are depen-

dent on a common sequence of injections terms Ji (note: the arrow orientation for g<
matches that of gR). The relationships between the sequences and the diagonal blocks
of G< are shown below:

8

Ji = DiΣ
<
i D

∗
i , i= 1,2, . . . ,Ny

g
−→
<
1 = J1

g
−→
<
i = Ji+

(

g
−→R
i−1

)T
g
−→
<
i−1

(

g
−→R
i−1

)C
, i= 2, . . . ,Ny

g
<
←−
Ny = JNy (8)

g
<
←−
i = Ji+ g

R
←−
i g

<
←−
i+1

(

g
R
←−
i

)∗
, i= Ny− 1, . . . ,1

G<(1,1) = g
<
←−
1

G<(i, i) = g
<
←−
i + g

−→
<
i − Ji, i= 2, . . . ,Ny

Similar serial recursions have been shown in [1] and [26]. Our strategy in this work
is to exploit the distributed compact representation of GR in order to produce these
sequences efficiently. That is, we will divide the computation needed to calculate the
three sequences Ji, g

−→
<
i , and g

<
←−
i . into several sub-problems that can be efficiently sepa-

rated across many processors.
As motivation, if we assume that there are Ny = 2N blocks, we can define two sub-

problems by separating Σ< = Σ<;1 +Σ<;2, where Σ<;1 contains blocks 1 through N and
Σ<;2 contains blocks N+ 1 through 2N. Then, we can write:

G< = GrΣ<Gr∗ = Gr (Σ<;1 +Σ<;2)Gr∗ = GrΣ<;1Gr∗+GrΣ<;2Gr∗ = G<;1 +G<;2.

For this example, we have assumed an equal separation of the diagonal blocks for the
scattering matrix Σ<, i.e. Σ<;1

i = 0, ∀i> N. Thus, for the first sub-problem we have:

9

Ji;1 = DiΣ
<;1
i D∗

i , i= 1,2, . . . ,N
Ji;1 = 0, i= N+ 1,2, . . . ,2N

g
−→
<
1;1 = J1;1

g
−→
<
i;1 = Ji;1 +

(

g
−→R
i−1

)T
g
−→
<
i−1;1

(

g
−→R
i−1

)C
, i= 2, . . . ,N

g
−→
<
i;1 =

(

g
−→R
i−1

)T
g
−→
<
i−1;1

(

g
−→R
i−1

)C
, i= N+ 1, . . . ,2N

g
<
←−
i;1 = 0, i= 2N, . . . ,N+ 1

g
<
←−
N;1 = JN;1

g
<
←−
i;1 = Ji;1 + g

R
←−
i g

<
←−
i+1;1

(

g
R
←−
i

)∗
, i= N− 2, . . . ,1

We then see the following relationships for the second sub-problem:

Ji;2 = 0, i= 1,2, . . . ,N

Ji;2 = DiΣ
<;2
i D∗

i , i= N+ 1,2, . . . ,2N

g
−→
<
i;2 = 0, i= 1, . . . ,N

g
−→
<
N+1;2 = JN+1;2

g
−→
<
i;2 = Ji;2 +

(

g
−→R
i−1

)T
g
−→
<
i−1;2

(

g
−→R
i−1

)C
, i= N+ 2, . . . ,2N

g
<
←−
2N;2 = J2N;2

g
<
←−
i;2 = Ji;2 + g

R
←−
i g

<
←−
i+1;2

(

g
R
←−
i

)∗
, i= 2N− 1, . . . ,N+ 1

g
<
←−
i;2 = g

R
←−
i g

<
←−
i+1;2

(

g
R
←−
i

)∗
, i= N, . . . ,1

The recursions for the case of two sub-problems are illustrated in Figure 2 with Ny =
2N = 6. Here, the shaded terms in Figure 2(a) and Figure 2(b) represent the terms for
each sub-problem that will be computed on CPU 1 and CPU 2 respectively. In sum-
mary, the separation of the diagonal blocks, the generator sequences, and the scattering
matrix evenly across two computers will result in the following order of operations:

10

R

R

R

R

R

R

R

J

J

2;1

3;1

2;1

3;1

1;1g

g

g

J1;1

g

g

g6;1

5;1

4;1
3

5

4

2

1

2

1g

g

g

g

g

g

g

g

g

g3;1

2;1

1;1

<

<

<

<

<

<

<

<

<

(a) The non-zero matrices that need to be computed
for sub-problem 1. The terms that are computed on
CPU 1 are shaded.

R

R

R

R

R

R

R

J

J

J

g

g

g 6;2

5;2

4;2

g

g

g

5

4
g

g

g

4;2

5;2

6;2
5

4

3

2

1

g

g

g

g

g

g

g

6;2

5;2

4;2

3;2

2;2

1;2

<

<

<

<

<

<

<

<

<

(b) The non-zero matrices that need to be computed
for sub-problem 2. The terms that are computed on
CPU 2 are shaded.

Figure 2: Distribution of G< computation into two sub-problems across two CPUs.

11

CPU 1 CPU 2

Stage I Ji;1 = DiΣ
<;1
i D∗

i , Ji;2 = DiΣ
<;2
i D∗

i ,

i= 1,2, . . . ,N i= N+ 1,2, . . . ,2N

Stage II g
−→
<
1;1 = J1;1 g

<
←−
2N;2 = J2N;2

g
−→
<
i;1 = Ji;1 +

(

g
−→R
i−1

)T
g
−→
<
i−1;1

(

g
−→R
i−1

)C
, g

<
←−
i;2 = Ji;2 + g

R
←−
i g

<
←−
i+1;2

(

g
R
←−
i

)∗
,

i= 2, . . . ,N i= 2N− 1, . . . ,N+ 1

Stage III g
<
←−
i;2 = g

R
←−
i g

<
←−
i+1;2

(

g
R
←−
i

)∗
, g

−→
<
i;1 =

(

g
−→R
i−1

)T
g
−→
<
i−1;1

(

g
−→R
i−1

)C
,

i= N, . . . ,1 i= N+ 1, . . . ,2N

Stage IV g
<
←−
N;1 = JN;1 g

−→
<
N+1;2 = JN+1;2

g
<
←−
i;1 = Ji;1 + g

R
←−
i g

<
←−
i+1;1

(

g
R
←−
i

)∗
, g

−→
<
i;2 = Ji;2 +

(

g
−→R
i−1

)T
g
−→
<
i−1;2

(

g
−→R
i−1

)C
,

i= N− 2, . . . ,1 i= N+ 2, . . . ,2N

If we consider multiplication to be of order N3
x , then on a single processor the G<

calculation would require 3× (2Ny)N3
x = 6NyN3

x operations. In this case we have four
stages, each with 2× Ny

2 N
3
x = NyN3

x operations. Therefore, using two processors we
have reduced the number of multiplications to 4NyN3

x . We now generalize this process
and demonstrate further speed-up as both the number of processors and the length of
the device increase.

4.2 Parallel Implementation
In order to simplify the presentation of the method, we will assume that the number
of sub-problems p evenly divides the total number of blocks Ny = pN. In general
this assumption is not required. We will separate the G< operation evenly into p sub-
problems by dividing Σ< = Σ<;1 +Σ<;2 + . . .Σ<;p, where Σ<;k contains the kth portion
of the less-than scattering matrix. Given that Σ<;k

i = 0, ∀i> kN and i< (k− 1)N+ 1,
the kth sub-problem will be solved through the following recursions:

12

Ji;k = 0, i= 1, . . . ,(k− 1)N

Ji;k = DiΣ
<;k
i D∗

i , i= (k− 1)N+ 1, . . . ,kN
Ji;k = 0, i= kN+ 1, . . . , pN

g
−→
<
i;k = 0, i= 1, . . . ,(k− 1)N

g
−→
<
i;k = J1;k, i= (k− 1)N+ 1

g
−→
<
i;k = Ji;k+

(

g
−→R
i−1

)T
g
−→
<
i−1;k

(

g
−→R
i−1

)C
, i= (k− 1)N+ 2, . . . ,kN

g
−→
<
i;k =

(

g
−→R
i−1

)T
g
−→
<
i−1;k

(

g
−→R
i−1

)C
, i= kN+ 1, . . . , pN

g
<
←−
i;k = 0, i= pN, . . . ,kN+ 1

g
<
←−
i;k = Ji;k, i= kN

g
<
←−
i;k = Ji;k+ g

R
←−
i g

<
←−
i+1;k

(

g
R
←−
i

)∗
, i= kN− 1, . . . ,(k− 1)N+ 1

g
<
←−
i;k = g

R
←−
i g

<
←−
i+1;k

(

g
R
←−
i

)∗
, i= (k− 1)N, . . . ,1

So, in a sense by splitting the scattering matrix we have divided the injection sequence J
evenly and created two new sub-problem propagating sequences g

−→
<
i;k and g

<
←−
i;k. However,

the sub-problem propagating sequences have the special property that they do not start
(are zero) until they reach the indices governed by the sub-problem. This is due to the
fact that there are no injection terms for the given sub-problem until these points are
reached. In addition, once outside the range of the sub-problem we do not have any
additional injection terms in the recursions. Thus, we have a standard two-sided auto-
regressive expression where the terms are simply propagated by multiplication with
generator matrices.

The recursions for the case of four sub-problems are illustrated in Figure 3 for an
example with Ny = 4N = 12. Here, the shaded terms in Figure 3(a) and Figure 3(b)
represent the terms for each sub-problem that are computed on CPU 1 and CPU 4 re-
spectively. For each sub-problem we introduce two new sequences that will be referred
to as ”skip matrices”. Specifically, we define for each processor k two matrices

[

g R←−
]

k

and
[

g
−→R
]T

k
that are accumulations of the generator terms stored on the processor. As

can be clearly seen from Figure 3 these skip matrices allow for several steps in the
recursive process to be preformed through a single operation. Therefore, if the skip
matrices are made available to each processor several terms for each sub-problem can
be found concurrently. In Figure 3(b), we can see that skip matrices will allow for g

<
←−
9;4,

g
<
←−
6;4, and g

<
←−
3;4 to be determined currently by CPUs 3, 2, and 1 respectively.

13

g

g

g6;1

5;1

4;1

R

R R

R

R

R

R

R

R

R

R

R

R

R

R

J

J

2;1

3;1

2;1

3;1

1;1g

g

g

J1;1

g

g

2

1

g

g

g

g

g

g

7;1

8;1

9;1

10;1

11;1

12;1
11

10

9

8

7

g

g

g

1;1

2;1

3;1

3

5

4

2

1

6

g

g

g

g

g

g

g

g

g

g

g

[g]

[g]2

3

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(a) The non-zero matrices that need to be computed
for sub-problem 1. The terms that are computed on
CPU 1 are shaded.

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

g

g

g
11

10

10;2

11;2

12;2

J

J

J

12;4

11;4

10;4

g

g

g

g

g

g

g

g

g

g

g

g11

10

9

8

7

6

g

g

2

1

g

g

g

5

4

3

g

g

g

g

g

g

3

2

12;4

11;4

10;4

9;4

8;4

7;4

6;4

5;4

4;4

3;4

1;4

2;4

[g]

[g]

g

g
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(b) The non-zero matrices that need to be computed
for sub-problem 4. The terms that are computed on
CPU 4 are shaded.

Figure 3: Distribution of G< computation into four sub-problems across four CPUs.

14

Given that each sub-problem will produce both a forward and backward propa-
gating sequence it should be clear that CPU k will need to preform computation for
g
−→
< sequences from sub-problems {k+ 1,k+ 2, . . . , p} and g<←− sequences from sub-

problems {1,2, . . . ,k− 1}. However, each g
−→
< sequence and g<←− sequence from other

sub-problems may be combined before the generators on that CPU are applied. This
is due to the fact that the sequences from each sub-problem will eventually be added
together to form G< =

p
∑
k=1

G<;k. For the example shown in Figure 3 we see that CPU

1 will first need to form:

g
<
←−
4;4 + g

<
←−
4;3+ g

<
←−
4;2 =

[

g R←−
]

2

([

g R←−
]

3
g
<
←−
10;4

[

g R←−
]∗

3
+ g

<
←−
7;3

)[

g R←−
]∗

2
+ g

<
←−
4;2,

before the required terms for each sub-problem can be calculated. That is, after the lead
term for the backward propagating sequence:

(

g
<
←−
4;4 + g

<
←−
4;3 + g

<
←−
4;2

)

has been computed,

the generators governed by CPU 1: g
R
←−
3 , g

R
←−
2 , and g

R
←−
1 , can be applied to fulfill the

sub-problem solutions. We now have all the tools necessary to construct a general
procedure:

1. Compute the skip products of each generator sequence g
−→R and g R←−, i.e. com-

pute
[

g R←−
]

k
=

kN
∏

i=(k−1)N+1
g
R
←−
i and

[

g
−→R
]T

k
=

(k−1)N
∏

i=kN−1

(

g
−→R
i

)T
, where we will define

(

g
−→R
0

)T
= g

R
←−
Ny = I.

2. Compute the initial injection and propagation terms for each sub-problem:

Ji;k = DiΣ
<;k
i D∗

i , i= (k− 1)N+ 1, . . . ,kN

g
−→
<
i;k = Ji;k, i= (k− 1)N+ 1

g
−→
<
i;k = Ji;k+

(

g
−→R
i−1

)T
g
−→
<
i−1;k

(

g
−→R
i−1

)C
, i= (k− 1)N+ 2, . . . ,kN

g
<
←−
i;k = Ji;k, i= kN

g
<
←−
i;k = Ji;k+ g

R
←−
i g

<
←−
i+1;k

(

g
R
←−
i

)∗
, i= kN− 1, . . . ,(k− 1)N+ 1

3. Transfer forward and backward skip products:
[

g
−→R
]T

k
and

[

g R←−
]

k
, as well as

forward and backward lead propagating matrices: g
−→
<
kN;k and g

<
←−
(k−1)N+1;k, for each

sub-problem k to all CPUs. This will be a total of 4pNx2 entries.

15

4. CPU k will construct combined lead propagating term for g<←− sequences from
sub-problems {k+ 1,k+ 2, . . ., p}.

p

∑
j=k+1

g
<
←−
kN+1; j = g

<
←−
kN+1;k+1 +

p

∑
j=k+2

(
j−1

∏
l=k+1

[

g R←−
]

l

)

g
<
←−
(j−1)N+1; j

(
k+1

∏
l= j−1

[

g R←−
]∗

l

)

CPU k will construct combined lead propagating term for g
−→
< sequences from

sub-problems {1,2, . . . ,k− 1}.

k−1

∑
j=1

g
−→
<
(k−1)N; j = g

−→
<
(k−1)N;k−1 +

k−2

∑
j=1

(
j+1

∏
l=k−1

[

g
−→R
]T

l

)

g
−→
<
jN+1; j

(
k−1

∏
l= j+1

[

g
−→R
]C

l

)

5. Successively multiply by the governed generator terms g R←− and g
−→R in order fulfill

sub-problem solutions.

p

∑
j=k+1

g
<
←−
i; j =

(
kN

∏
l=i
g
R
←−
l

)
p

∑
j=k+1

g
<
←−
kN+1; j

(
i

∏
l=kN

(

g
R
←−
l

)∗
)

,

i= kN, . . . ,(k− 1)N+ 1.

k−1

∑
j=1

g
−→
<
i; j =

(
(k−1)N

∏
l=(i−1)

(

g
−→R
l

)T
)
k−1

∑
j=1

g
−→
<
(k−1)N; j

(
(i−1)

∏
l=(k−1)N

(

g
−→R
l

)C
)

,

i= (k− 1)N+ 1, . . . ,kN.

6. Each CPU will combine portions of all sub-problem solutions in order to produce
corresponding portion of the diagonal blocks of G< based upon the relationships
shown in (8).

In order to analyze the computational improvement for the approach we consider
the number of multiplications required for each stage. The accumulation of the skip
matrices described in Step 1 will result in 2N3

x Ny/p multiplications. The individual
sub-problem recursions of Step 2 results in 6N3

x Ny/p multiplications. Step 4 describes
how the skip matrices may be applied in order to create the sum for each sub-problem
propagating sequence, requiring 2N3

x (p− 2) multiplications. Finally, these two sums
must be propagated through each governed generator matrices, requiring 4N3

x Ny/p
multiplications. If one is interested in also computing the current characteristics for
the device, they may be determined through the off-diagonal blocks of G<:

G<(i, i+ 1) = g
<
←−
i+1

(

g
R
←−
i

)∗
+
(

g
−→R
i

)T
g
−→
<
i , i= 1, . . . ,Ny− 1. (9)

As portions of each generator sequence and propagating sequence have been evenly
distributed amongst the processors, the resulting computation would be 2N3

x Ny/p. There-
fore, the total number of multiplications for the approach is 2N3

x (p− 2)+ 14N3
x Ny/p

16

2nm cross-section 3nm cross-section 4nm cross-section
p 4 8 16 32 4 8 16 32 4 8 16 32

35nm length
GR 35.8 21.5 16.2 N/A 411.1 241.4 163.6 N/A 1915.5 1099.7 726.1 N/A
G< 22.7 12.7 10.0 N/A 253.7 133.7 81.2 N/A 1159.2 598.5 349.7 N/A

RGF× 1.5 2.7 3.4 N/A 1.4 2.6 4.1 N/A 1.4 2.6 4.2 N/A
53nm length

GR 51.4 29.3 19.7 N/A 594.4 331.9 211.4 N/A 2756.1 1523.4 946.4 N/A
G< 33.5 18.5 13.8 N/A 380.9 198.5 113.8 N/A 1741.6 887.8 489.1 N/A

RGF× 1.6 2.8 4.0 N/A 1.5 2.7 4.5 N/A 1.4 2.7 4.6 N/A
70nm length

GR 67.1 38.8 23.8 17.7 779.0 422.6 255.0 181.3 3601.3 1953.7 1154.5 782.1
G< 44.6 24.4 15.8 12.9 507.6 261.5 145.5 103.4 2324.2 1182.2 640.2 408.9

RGF× 1.6 2.8 4.5 5.7 1.5 2.8 4.8 6.8 1.4 2.7 4.9 7.4

Table 1: Runtime comparisons between parallelGR and G< algorithms and serial RGF
approach. Silicon nanowires with lengths 35nm, 53nm, and 70nm are examined with
cross-sections of 2nm, 3nm, and 4nm. ”RGF×” is the observed speed-up for the com-
bined time. ”N/A” is used for devices that are too short to support the number of CPUs.

compared to 6N3
x Ny for the serial algorithm. Therefore, the speedup of our approach is

p
2.34+ p(p−2)

3Ny

(10)

We can clearly see that if Ny >> p we will approach a speedup of p/2.34.

5 Results
The parallel GR and G< algorithms have been implemented in C using MPI for inter-
processor communication. All computational complexity analyses were performed on
a cluster of Intel E5410 processors with 16GB of shared memory for the 8 core ma-
chines. The OMEN simulator [25] was used to perform simulations for square silicon
nanowires employing the sp3d5s∗ atomistic tight-binding model with electron-phonon
scattering. We will begin by demonstrating the computational efficiency of our ap-
proach. We will then analyze device characteristics for large cross-section nanowires
that have prohibitive memory requirements for the serial RGF approach.

Each NEGF nanowire simulation requires thousands of GR, G<, and G> compu-
tations. For our approach, as well as RGF, the time for each computation will remain
constant given that the underlying structure of the Hamiltonian and scattering matrices
does not change. In order to analyze the computational benefits of our approach we
have examined several different cross-section sizes and lengths of nanowires. Specifi-
cally, silicon [100] nanowires with lengths 35nm, 53nm, and 70nm are examined with
cross-sections of 2nm, 3nm, and 4nm. Table 1 shows the runtime for the GR and G<

computations (the time needed for G> is identical to that of G<). ”RGF×” is the ob-
served speed-up for the combined time of GR, G<, and G> calculations compared to

17

0 5 10 15 20 25 30
0

2

4

6

8

10

12
Sp

ee
d−

up

Number of CPUs

Estimate
2x2x50nm3

3x3x50nm3

(a) G< speed-up is compared against theoretical estimate from (10) for 50nm length
silicon nanowires.

5 10 15 20 25 30
2

4

6

8

10

12

Sp
ee

d−
up

Number of CPUs

Estimate
2x2x100nm3

3x3x100nm3

(b) G< speed-up is compared against theoretical estimate from (10) for 100nm length
silicon nanowires.

Figure 4: Verification of theoretical estimate for G< RGF speed-up considering 50nm
and 100nm length silicon nanowires.

18

1.5 2 2.5 3 3.5 4 4.5
50

100

150

200

250

300

350

400

Diameter (nm)

El
ec

tr
on

 M
ob

ili
ty

 µ
e (c

m
2 /V

s)

Figure 5: Phonon-limited electron mobility µph as function of the diameter of [100] ori-
ented circular nanowires at room temperature. The electron density along the channel
is homogeneous and set to n= 1e20cm−3.

RGF. ”N/A” is used to for devices that are not long enough to be divided based upon the
number of CPUs. We can clearly see that the efficiency of our algorithm improves as
both the length and cross-section of the device increase. There are two reasons behind
this trend. First, considering a fixed number of processors a longer device will devote
less of the total time to sub-problem combining. In addition, as the cross-section size
increases the inter-processor communication costs will be a smaller fraction of the total
simulation time. We see these effects again when examining Figure 4. Here, we verify
the accuracy of the estimated G< scaling trend that was derived in (10). The speed-up
over RGF for both 50nm and 100nm nanowires are compared against our theoretical
estimate. It is important to note that although the speed-up estimate (10) is independent
of the cross-section size, effects such as data access time, vector scaling/addition, and
inter-processor communication will play a role in determining the efficiency. Thus,
in both Figures 4(a) and 4(b) we again see improved efficiency when considering the
larger 3nm cross-section nanowires. In the case of the 3× 3× 100nm3 nanowire we
achieve 11.8× speed-up when utilizing 32 CPUs.

In addition to providing computational improvements, our algorithm facilitates the
simulation of larger cross-section devices. If we consider the 4nm cross-section de-
vices analyzed in Table 1, the RGF method would require between 16GB and 32GB
of memory for lengths of 35nm to 70nm. These devices would not be able to be ana-
lyzed without the use of special purpose hardware. As an illustration of the capacity
for our algorithm to simulate devices previously viewed to have prohibitive memory
requirements, we stably generate the mobility for 4.5nm cross-section devices with
electron-phonon scattering. In order to facilitate complete nanowire simulations we
have implemented our algorithm on dual hex-core AMD Opteron 2435 (Istanbul) pro-

19

cessors running at 2.6GHz, 16GB of DDR2-800 memory, and a SeaStar 2+ router.
As an application, the low-field phonon-limited mobility of electrons µph is calculated
in circular nanowires with diameters ranging from 1.5 to 4.5nm and transport along
the [100] crystal axis. The ”dR/dL” method [27] and the same procedure as in [28]
are used to obtain µph. The channel resistance ”R” is computed as function of the
nanowire length ”L” and then converted into a mobility. Here, ”L” is set to 35nm, ”R”
is computed in the limit of ballistic transport and in the presence of electron-phonon
scattering, and the difference between these two points is considered to evaluate dR/dL.
The results are shown in Figure 5. From a numerical perspective, the computation of
each Green’s Function, at a given energy, was parallelized on 16 CPUs for all the device
structures. As was alluded to above the simulation of these structures would not have
been possible (due to memory restrictions) without the decomposition of the device
through our parallel methods.

6 Conclusions
In this work we have developed algorithms for parallel NEGF simulation with scat-
tering. The computational benefits of our approach have been demonstrated on large
cross-section silicon nanowires. We show improvements of over 11× for the G< and
G> computations. In addition, our approach enables simulations without the need for
special purpose hardware. This can best be observed through our simulation results
for 4.5nm cross-section silicon nanowires. The algorithms developed in this work
are applicable for a wide range of device geometries considering both atomistic and
effective-mass models. In addition to offering significant computational improvements
over the serial Recursive Green’s Function algorithm, our approach facilitates simula-
tion of realistically sized devices on typical distributed computing hardware.

References
[1] A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, and R. Venugopal.

Two-dimensional quantum mechanical modeling of nanotransistors. Journal of
Applied Physics, 91(4):2343–2354, 2002.

[2] S. Cauley, J. Jain, C.-K. Koh, and V. Balakrishnan. A scalable distributed method
for quantum-scale device simulation. Journal of Applied Physics, 101(123715),
2007.

[3] S. Li, S. Ahmed, G. Klimeck, and E. Darve. Computing entries of the inverse
of a sparse matrix using the find algorithm. Journal of Computational Physics,
227(22):9408–9427, 2008.

[4] M. Stadele, R. Tuttle, and K. Hess. Tunneling through ultrathin sio2 gate oxides
from microscopic models. Journal of Applied Physics, 89(1):348–363, 2001.

20

[5] Timothy A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern mul-
tifrontal method. ACM Transactions on Mathematical Software, 30(2):196–199,
2004.

[6] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM J.
Matrix Analysis and Applications, 20(3):720–755, 1999.

[7] T.B. Boykin, M. Luisier, and G. Klimeck. Multiband transmission calculations for
nanowires using an optimized renormalization method. Phys. Rev, B 77:165318,
2008.

[8] K. Bowden. A direct solution to the block tridiagonal matrix inversion problem.
International Journal of General Systems, 15:185–198, 1989.

[9] B. Bukhberger and G. A. Emel’yanenko. Methods of inverting tridiagonal matri-
ces. Computational Mathematics and Mathematical Physics, 13:10–20, 1973.

[10] E. M. Godfrin. A method to compute the inverse of an n-block tridiagonal quasi-
hermitian matrix. Journal of Physics:Condensed Matter, 3:7843–7848, 1991.

[11] T. Oohashi. Some representation for inverses of band matrices. TRU Mathemat-
ics, 14:39–47, 1978.

[12] T. Torii. Inversion of tridiagonal matrices and the stability of tridiagonal systems
of linear equations. Technology Reports of the Osaka University, 16:403–414,
1966.

[13] G. Meurant. A review on the inverse of symmetric block tridiagonal and
block tridiagonal matrices. SIAM Journal on Matrix Analysis and Applications,
13(3):707–728, 1992.

[14] E. Asplund. Inverses of matrices ai j which satisfy ai j = 0 for j > i+ p. Mathe-
matica Scandinavica, 7:57–60, 1959.

[15] S.O. Asplund. Finite boundary value problems solved by green’s matrix. Mathe-
matica Scandinavica, 7:49–56, 1959.

[16] R. Bevilacqua, B. Codenotti, and F. Romani. Parallel solution of block tridiagonal
linear systems. Linear Algebra Appl., 104:39–57, 1988.

[17] R. Nabben. Decay rates of the inverses of nonsymmetric tridiagonal and band
matrices. SIAM Journal on Matrix Analysis and Applications, 20(3):820–837,
1999.

[18] F. Romani. On the additive structure of inverses of banded matrices. Linear
Algebra Appl., 80:131–140, 1986.

[19] P. Rozsa. On the inverse of band matrices. Integral Equations and Operator
Theory, 50:82–95, 1987.

21

[20] P. Rozsa, R. Bevilacqua, P. Favati, and F. Romani. On the inverse of block tridi-
agonal matrices with applications to the inverses of band matrices and block band
matrices. Operator Theory: Advances and Applications, 40:447–469, 1989.

[21] P. Rozsa. Band matrices and semi-separable matrices. Colloquia Mathematica
Societatis Janos Bolyai, 50:229–237, 1986.

[22] P. Concus and Meurant G. On computing INV block preconditionings for the
conjugate gradient method. BIT, 26:493–504, 1986.

[23] S. Demko, W. F. Moss, and Smith P. W. Decay rates for inverses of band matrices.
Mathematics of Computation, 43:491–499, 1984.

[24] P. Concus, G. H. Golub, and Meurant G. Block preconditionings for the conjugate
gradient method. SIAM Journal on Scientific Computing, 6:220–252, 1985.

[25] M. Luisier and G. Klimeck. Atomistic full-band simulations of si nanowire tran-
sistors with electron-phonon scattering. Phys. Rev, B 80:155430, 2009.

[26] J. Jain, S. Cauley, H. Li, C.-K. Koh, and V. Balakrishnan. Numerically stable
algorithms for inversion of block tridiagonal and banded matrices, submitted for
consideration. Purdue ECE Technical Report (1358), 2007.

[27] K. Rim, S. Narasimha, M. Longstreet, A. Mocuta, and J. Cai. Low field mobility
characteristics of sub-100 nm unstrained and strained Si MOSFETs. IEDM Tech.
Dig., 43-46 (2002).

[28] M. Luisier. Phonon-limited and effective low-field mobility in n- and p-type
[100]-, [110]-, and [111]-oriented Si nanowire transistors. Appl. Phys. Lett., 98,
032111 (2011).

A Parallel Computation of the Retarded Green’s Func-
tion

In Appendix A we build upon the approach of [2] to consider the computation of a
distributed generator representation for GR. In Section A.1 we introduce a mapping
framework for combining sub-matrices corresponding to subsets of the device struc-
ture. This has similarities to the approach presented in [2], where in that case only the
diagonal entries of GR were needed to describe the density of states. Section A.2 illus-
trates how a recursive process can be formulated in order to reconstruct the compact
representation of GR. This involves several key differences when compared to [2] as
significantly more information is required fromGR. Finally, in Section A.3 the parallel
GR algorithm is summarized including an analysis of the computational complexity.

22

A.1 Matrix Maps
Matrix mappings are constructed in order to eventually produce the block tridiagonal
portion of GR while avoiding any unnecessary computation during the combining pro-
cess. Specifically, we will show that both the boundary block entries (first block row
and last block column) and the block tridiagonal entries from any combined inverse
φ−1
i∼ j must be attainable (not necessarily computed) for all combining steps. We begin

by illustrating the initial stage of the combining process given four divisions, where for
simplicity each will be assumed to haveN blocks of size Nx. First, the two sub-matrices
φ1 and φ2 are connected through the bridge matrix BN and together they form the larger
block tridiagonal matrix φ1∼2. By examining Figure 1 it can be seen that eventually
φ−1

1∼2 and φ−1
3∼4 will be combined and we must therefore produce the boundaries for

each combined inverse. From (5) the first block row and last block column of φ−1
1∼2 can

be calculated through the use of an “adjustment” matrix:

J =
(

I −φ−1
2 (1,1)BTN

−φ−1
1 (N,N)BN I

)−1
,

as follows:

φ−1
1∼2(1, :) =

(

φ−1
1 (1, :) 0

)

−

([

−φ−1
1 (1,N)BNJ12φ

−1
1 (:,N)T

]T

[

−φ−1
1 (1,N)BNJ11φ−1

2 (1, :)
]T

)T

,

(11)

φ−1
1∼2(:,2N) =

(

0 φ−1
2 (N, :)

)T
−

([

−φ−1
2 (N,1)BTNJ22φ

−1
1 (:,N)T

]T

[

−φ−1
2 (N,1)BTNJ21φ−1

2 (1, :)
]T

)

.

In addition, the rth diagonal block of φ−1
1∼2 can be calculated using the following rela-

tionships for r ≤ N :

φ−1
1∼2(r,r) = φ−1

1 (r,r)−
(

−φ−1
1 (r,N)BNJ12φ−1

1 (r,N)T
)

,

(12)

φ−1
1∼2(r+N,r+N) = φ−1

2 (r,r)−
(

−φ−1
2 (r,1)BTNJ21φ

−1
2 (1,r))

)T
,

where the rth off-diagonal block of φ−1
1∼2 can be calculated using the following relation-

ships:

23

φ−1
1∼2(r,r+ 1) = φ−1

1 (r,r+ 1)−
(

−φ−1
1 (r,N)BNJ12φ

−1
1 (r+ 1,N)T

)

,

(13)

φ−1
1∼2(r+N,r+ 1+N) = φ−1

2 (r,r+ 1)−
(

−φ−1
2 (r+ 1,1)BTNJ21φ−1

2 (1,r))
)T

,

r < N,

φ−1
1∼2(r,r+ 1) = 0−

(

−φ−1
1 (r,N)BNJ11φ−1

2 (1,1)
)

,

r = N.

The combination of φ3 and φ4 through the bridge matrix B3N results in similar rela-
tionships to those seen above. Thus, in order be able to produce both the boundary and
block tridiagonal portions of each combined inverse we assign a total of twelve Nx×Nx
matrix maps for each sub-matrix k. Mk;1−4 describe effects for the kth portion of the
boundary, Mk;5−8 describe the effects for a majority of the tridiagonal blocks, while
Ck;1−4, which we will refer to as “cross” maps, can be used to produce the remainder
of the tridiagonal blocks.

Initially, for each sub-matrix i the mappings Mk;i = I, k = 1,4, with all remaining
mapping terms set to zero. This ensures that initially the boundary of φ−1

i∼i matches
the actual entries from the sub-matrix inverse, and the modifications to the tridiagonal
portion due to combining are all set to zero. By examining the first block row, last
block column, and the tridiagonal portion of the combined inverse φ−1

1∼2 we can see
how the maps can be used to explicitly represent all of the needed information. The

24

−1φ1

−1φ2

M1;2 M 2;2

M 3;1 M 4,1

M 2;1M 1;1

M 3;2 M 4;2

−1φ1~2

[UR]T

−1φ1~2

[LR]

Figure 6: Mapping dependencies when combining φ−1
1 and φ−1

2 to form φ−1
1∼2.

governing responsibilities of the individual matrix maps are detailed below:

φ−1
1∼2(1, :) =

[

M1;1φ−1
1 (1, :)+M2;1φ−1

1 (:,N)T
]T

[

M1;2φ−1
2 (1, :)+M2;2φ−1

2 (:,N)T
]T

T

,

φ−1
1∼2(:,2N) =

[

M3;1φ−1
1 (1, :)+M4;1φ−1

1 (:,N)T
]T

[

M3;2φ
−1
2 (1, :)+M4;2φ

−1
2 (:,N)T

]T

 ,

φ−1
1∼2(r,s) = φ−1

1 (r,s)− [φ−1
1 (r,1)M5;1φ

−1
1 (1,s)+φ−1

1 (r,1)M6;1φ
−1
1 (s,N)T+

φ−1
1 (r,N)M7;1φ

−1
1 (1,s)+φ−1

1 (r,N)M8;1φ
−1
1 (s,N)T], (14)

φ−1
1∼2(r,s+N) =−[φ−1

1 (r,1)C1;1φ
−1
2 (1,s)+φ−1

1 (r,1)C2;1φ
−1
2 (s,N)T+

φ−1
1 (r,N)C3;1φ−1

2 (1,s)+φ−1
1 (r,N)C4;1φ−1

2 (s,N)T],

φ−1
1∼2(r+N,s+N) = φ−1

2 (r,s)− [φ−1
2 (r,1)M5;2φ

−1
2 (1,s)+φ−1

2 (r,1)M6;2φ
−1
2 (s,N)T+

φ−1
2 (r,N)M7;2φ−1

2 (1,s)+φ−1
2 (r,N)M8;2φ−1

2 (s,N)T],

r,s≤ N,

It is important to note that all of the expressions (11)-(13) can be written into the matrix
map framework of (14). Figure 6 shows the mapping dependencies for the first block
row and last block row (or column since K is symmetric). From (11) we see that
both of the block rows are distributed based upon the location of each sub-matrix with
respect to the bridge point, i.e. the mapping terms associated with φ−1

1 can be used to
produce the first portion of the rows while those associated with φ−1

2 can be used for
the remainder. In fact, this implicit division for the mapping dependencies holds for

25

the block tridiagonal portion of the combined inverses as well, enabling an efficient
parallel implementation. Thus, from this point we can deduce that the matrix maps for
the first block row (14) must be updated in the following manner:

M1;1 ←M1;1 +(φ−1
1 (1,N)BNJ12)M3;1;

M2;1 ←M2;1 +(φ−1
1 (1,N)BNJ12)M4;1;

M3;1 ← (φ−1
1 (1,N)BNJ11)M1;2;

M4;1 ← (φ−1
1 (1,N)BNJ11)M2;2;

In order to understand these relationships it is important to first recall that the up-
dates to the maps associated with sub-matrix φ1 are dependent on the last block column
φ−1

1 (:,N). Thus, we see a dependence on the previous state for the last block column
φ−1

1 (:,N), i.e. the new state of the mapping terms M1;1 and M2;1 are dependent on the
previous state of the mapping terms M3;1 and M4;1 respectively. Similarly, a depen-
dence on φ−1

2 (1, :) results in the new state of the mapping terms M1;2 and M2;2 being
functions of the previous state of the mapping terms M1;2 and M1;2 respectively. Fi-
nally, although some of the mapping terms remain zero after this initial combining step
(M2;2 for example), the expressions described in (14) need to be general enough for
the methodology. That is, the mapping expressions must be able to capture combining
effects for multiple combing stages, regardless of the position of the sub-matrix with
respect to a bridge point. For example, if we consider sub-matrix φ2 for the case seen
in Figure 1, during the initial combining step it would be considered a lower problem
and for the final combining step it would be considered a upper problem. Alternatively,
sub-matrix φ3 would be associated with exactly the opposite modifications. It is impor-
tant to note that every possible modification process, for the individual mapping terms,
is encompassed within this general matrix map framework.

A.2 Recursive Combining Process
In order to formalize the notion of a recursive update scheme we will continue the ex-
ample from Section A.1. By examining the final combing stage for the case of four
divisions, we notice that the approach described in (11)-(13) can again be used to com-
bine sub-matrix inverses φ−1

1∼2 and φ−1
3∼4, through the bridge matrix B2N . The first block

row and last block column of φ−1
1∼4 can be calculated as follows:

φ−1
1∼4(1, :) =

(

φ−1
1∼2(1, :) 0

)

−

([

−φ−1
1∼2(1,2N)B2NJ12φ−1

1∼2(:,2N)T
]T

[

−φ−1
1∼2(1,2N)B2NJ11φ

−1
3∼4(1, :)

]T

)T

,

(15)

φ−1
1∼4(:,4N) =

(

0 φ−1
3∼4(2N, :)

)T
−

([

−φ−1
3∼4(2N,1)BT2NJ22φ−1

1∼2(:,2N)T
]T

[

−φ−1
3∼4(2N,1)BT2NJ21φ

−1
3∼4(1, :)

]T

)

,

given the adjustment matrix:

26

J =
(

I −φ−1
3∼4 (1,1)BT2N

−φ−1
1∼2 (2N,2N)B2N I

)−1
.

In addition, the rth diagonal block of φ−1
1∼4 can be calculated using the following

relationships:

φ−1
1∼4(r,r) = φ−1

1∼2(r,r)−
(

−φ−1
1∼2(r,2N)B2NJ12φ−1

1∼2(r,2N)T
)

,

(16)

φ−1
1∼4(r+ 2N,r+ 2N) = φ−1

3∼4(r,r)−
(

−φ−1
3∼4(r,1)BT2NJ21φ−1

3∼4(1,r))
)T

,

r ≤ 2N,

where the rth off-diagonal block of φ−1
1∼4 can be calculated using the following relation-

ships:

φ−1
1∼4(r,r+ 1) = φ−1

1∼2(r,r+ 1)−
(

−φ−1
1∼2(r,2N)B2NJ12φ

−1
1∼2(r+ 1,2N)T

)

,

(17)

φ−1
1∼4(r+ 2N,r+ 1+ 2N) = φ−1

3∼4(r,r+ 1)−
(

−φ−1
3∼4(r+ 1,1)BT2NJ21φ−1

3∼4(1,r))
)T

,

r < 2N,

φ−1
1∼4(r,r+ 1) = 0−

(

−φ−1
1∼2(r,2N)B2NJ11φ−1

3∼4(1,1)
)

,

r = 2N.

Again, it is important to note that each of the expressions (15)-(17) are implicitly di-
vided based upon topology. For example, the first 2N diagonal blocks of φ−1

1∼4 = GR

can be separated into two groups based upon the size of the sub-matrices φ1 and φ2.
That is,

φ−1
1∼4(r,r) = φ−1

1∼2(r,r)−
(

−φ−1
1∼2(r,2N)B2NJ12φ−1

1∼2(r,2N)T
)

,

r ≤ 2N,

can be separated for r ≤ N as:

φ−1
1∼4(r,r) = φ−1

1 (r,r)−
(
[

φ−1
2 (N,1)BTNJ22φ−1

1 (r,N)T
]T
)

·B2NJ12·
([

φ−1
2 (N,1)BTNJ22φ−1

1 (r,N)T
])

,

φ−1
1∼4(r+N,r+N) = φ−1

2 (r,r)−
(
[

φ−1
2 (N,r)+φ−1

2 (N,1)BTNJ21φ−1
2 (1,r)

]T
)

·B2NJ12·
([

φ−1
2 (N,r)+φ−1

2 (N,1)BTNJ21φ−1
2 (1,r)

])

.

Thus, the modifications to the diagonal entries can be written as just a function of the
first block row and last block column from the individual sub-matrices, using the matrix

27

map framework introduced in (14) for r ≤ N :

φ−1
1∼4(r,r) = φ−1

1 (r,r)−
(
[

M1;1φ
−1
1 (1,r)+M2;1φ

−1
1 (r,N)T

]T
)

·B2NJ12·
([

M1;1φ−1
1 (1,r)+M2;1φ−1

1 (r,N)T
])

,

φ−1
1∼4(r+N,r+N) = φ−1

2 (r,r)−
(
[

M1;2φ−1
2 (1,r)+M2;2φ−1

2 (r,N)
]T
)

·B2NJ12·
([

M1;2φ−1
2 (1,r)+M2;2φ−1

2 (r,N)
])

.

Here, the matrix maps are assumed to have been updated based upon the formation of
the combined inverses φ−1

1∼2 and φ−1
3∼4. Therefore, we can begin to formulate the recur-

sive framework for updating the matrix maps to represent the effect of each combining
step.

A.3 Update Scheme for Parallel Inversion and the Distributed Com-
pact Representation

The procedure begins with each division of the problem being assigned to one of p
available CPUs. In addition, all of the p− 1 bridge matrices are made available to
each of the CPUs. After the compact representation for each inverse has been found
independently, the combining process begins. Three reference positions are defined
for the formation of a combined inverse φ−1

i∼ j: the “start” position [st] = i, the “stop”
position [sp] = j, and the bridge position [bp] = + j−i2 ,. Due to the fact that a CPU t
will only be involved in the formulation of a combined inverse when [st] ≤ t ≤ [sp]
all combining stages on the same level (see Figure 1) can be performed concurrently.
When forming a combined inverse φ−1

i∼ j, each CPU [st]≤ t≤ [sp] will first need to form
the adjustment matrix for the combining step. Assuming a bridge matrix Bk, we begin
by constructing four “corner blocks”. If the upper combined inverse is assumed to have
Nu blocks and the lower to have Nl , the two matrices need from the upper combined
inverse are: [UR] = φ−1

[st]∼[bp](1,Nu) and [LR] = φ−1
[st]∼[bp](Nu,Nu), with the two matrices

from the lower being: [UL] = φ−1
[bp+1]∼[sp](1,1) and [LL] = φ−1

[bp+1]∼[sp](Nl ,1). These
matrices can be generated by the appropriate CPU through their respective matrix maps
(recall the example shown in Figure 6). Specifically, the CPUs corresponding to the
[st], [bp], [bp+1] and [sp] divisions govern the required information. The adjustment
matrix for the combining step can then be formed:

J =
(

I −[UL]BTk
−[LR]Bk I

)−1
.

After the adjustment matrix has been calculated the process of updating the matrix
maps can begin. For any combining step, the cross maps each CPU t must be updated
first:

28

if (t < [bp]) then
C1 ←C1 −MT

3;t(BkJ12)M3;t+1;
C2 ←C2 −MT

3;t(BkJ12)M4;t+1;
C3 ←C3 −MT

4;t(BkJ12)M3;t+1;
C4 ←C4 −MT

4;t(BkJ12)M4;t+1;
elseif (t == [bp]) then (18)
C1 ←C1 −MT

3;t(BkJ11)M1;t+1;
C2 ←C2 −MT

3;t(BkJ11)M2;t+1;
C3 ←C3 −MT

4;t(BkJ11)M1;t+1;
C4 ←C4 −MT

4;t(BkJ11)M2;t+1;
elseif (t < [sp]) then
C1 ←C1 −MT

1;t(BTk J21)M1;t+1;
C2 ←C2 −MT

1;t(BTk J21)M2;t+1;
C3 ←C3 −MT

2;t(BTk J21)M1;t+1;
C4 ←C4 −MT

2;t(BTk J21)M2;t+1;

Notice that the cross maps for CPU t are dependent on information from its neighbor-
ing CPU t + 1. This information must be transmitted and made available before the
cross updates can be performed. Next, updates to the remaining eight matrix maps
can be separated into two categories. The updates to the matrix maps for the upper
sub-matrices (t ≤ [bp]), are summarized below:

M5;t ←M5;t −MT
3;t(BkJ12)M3;t ;

M6;t ←M6;t −MT
3;t(BkJ12)M4;t ;

M7;t ←M7;t −MT
4;t(BkJ12)M3;t ;

M8;t ←M8;t −MT
4;t(BkJ12)M4;t ; (19)

M1;t ←M1;t +([UR]BkJ12)M3;t ;
M2;t ←M2;t +([UR]BkJ12)M4;t ;
M3;t ← ([LL]TBTk J22)M3;t ;
M4;t ← ([LL]TBTk J22)M4;t ;

29

The updates to the matrix maps for the lower sub-matrices (t > [bp]), will be:

M5;t ←M5;t −MT
1;t(BTk J21)M1;t ;

M6;t ←M6;t −MT
1;t(BTk J21)M2;t ;

M7;t ←M7;t −MT
2;t(BTk J21)M1;t ;

M8;t ←M8;t −MT
2;t(BTk J21)M2;t ; (20)

M3;t ←M3;t +([LL]T BTk J21)M1;t ;
M4;t ←M4;t +([LL]T BTk J21)M2;t ;
M1;t ← ([UR]BkJ11)M1;t ;
M2;t ← ([UR]BkJ11)M2;t ;

The above procedure, shown in (18)-(20), for modifying the matrix maps can be re-
cursively repeated for each of the combining stages beginning with the lowest level of
combining the individual sub-matrix inverses.

On completion the maps can then be used to generate the block tridiagonal en-
tries of GR. This subsequently allows for the computation of the generator sequences
for GR, via the relationships shown in (4), in a purely distributed fashion. The time
complexity of the algorithm presented is O(N3

x Ny/p+N3
x log p), with memory con-

sumptionO
(

N2
x Ny/p+N2

x
)

. The first term (N3
x Ny/p) in the computational complexity

arises from the embarrassingly parallel nature of both determining the generator se-
quences and applying the matrix maps to update the block tridiagonal portion of the
inverse. The second term (N3

x log p) is dependent on the number of levels needed to
gather combining information for p sub-matrix inverses. Similarly, the first term in
the memory complexity is due to the generator sequences and diagonal blocks, and
the second represents the memory required for the matrix maps of each sub-problem
governed.

30

φ−1
[bp+1]~[sp]

−1φ[st]~[bp]

[LL]

[UL]

[LR]

[UR]

	Purdue University
	Purdue e-Pubs
	3-29-2011

	Distributed NEGF Algorithms for the Simulation of Nanoelectronic Devices with Scattering
	Stephen Cauley
	Mathieu Luisier
	Venkataramanan Balakrishnan
	Gerhard Klimeck
	Cheng-Kok Koh

	1 Introduction
	2 Inverses of Block Tridiagonal Matrices
	2.1 Alternative Approach for Determining the Compact Representation

	3 Parallel Inversion of Block Tridiagonal Matrices
	4 Parallel Computation of the Less-than Green's Function
	4.1 Mathematical Description
	4.2 Parallel Implementation

	5 Results
	6 Conclusions
	A Parallel Computation of the Retarded Green's Function
	A.1 Matrix Maps
	A.2 Recursive Combining Process
	A.3 Update Scheme for Parallel Inversion and the Distributed Compact Representation

