
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-18-2013

An Effective Routability-driven Placer for Mixed-
size Circuit Designs
Shuai Li
School of Electrical and Computer Engineering, Purdue University, li263@purdue.edu

Cheng-Kok Koh
School of Electrical and Computer Engineering, Purdue University, chengkok@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Li, Shuai and Koh, Cheng-Kok, "An Effective Routability-driven Placer for Mixed-size Circuit Designs" (2013). ECE Technical Reports.
Paper 446.
http://docs.lib.purdue.edu/ecetr/446

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages

An Effective Routability-driven Placer for Mixed-size Circuit Designs

Shuai Li

Cheng-Kok Koh

TR-ECE-13-06

April 18, 2013

Purdue University

School of Electrical and Computer Engineering

465 Northwestern Avenue

West Lafayette, IN 47907-1285

An Effective Routability-driven Placer for Mixed-size
Circuit Designs

Shuai Li and Cheng-Kok Koh
School of Electrical and Computer Engineering, Purdue University

West Lafayette, IN, 47907-2035
{li263, chengkok}@purdue.edu

ABSTRACT
We propose a routability-driven analytical placer that aims
at distributing pins evenly. This is accomplished by includ-
ing a group of pin density constraints in its mathematical
formulation. Moreover, for mixed-size circuits, we adopt a
scaled smoothing method to cope with fixed macro blocks.
As a result, we have fewer cells overlapping with fixed blocks
after global placement, implying that the optimization of
the global placement solution is more accurate and that the
global placement solution resembles a legal solution more.
Routing solutions obtained by a commercial router show
that for most benchmark circuits, better routing results can
be achieved on the placement results generated by our pin
density oriented placer.

Keywords
routability-driven placement, pin density, mixed-size circuit

1. INTRODUCTION
The quality of placement results has been greatly im-

proved in the past decade, and many effective analytical
placers such as mPL [1], Aplace [2], NTUplace [3], etc.,
have been developed. However, using total half parame-
ter wirelength (HPWL) as the main objective, these placers
may generate routing congested regions. Indeed, routability
is one of most critical issues in modern circuit design [4].
Placement, the immediate step before routing, should play
an important role in alleviating routing congestion.

With the promotion of the ISPD11 and DAC12 routability-
driven placement contests [4] [5] (and earlier ISPD con-
tests), a number of routability-driven placers, including Sim-
PLR [6], Ripple [7], NTUplace4 [8], etc., have been proposed
in recent years. Generally, most existing routability-driven
placers resort to placement refinement for the alleviation
of possible routing congestions. After an initial solution is
generated by a traditional placement algorithm, congested
regions are located with the guidance of global routing over-
flows and/or pin penalty. The placement result is then re-
fined accordingly by means of techniques such as white space
allocation [9], cell bloating [10] [6], net-based movement [7],
etc. This process usually is iterative and continues until no
significant improvement can be made.

As mentioned, most existing routability-driven placers usu-
ally use global routing overflow as the main congestion esti-
mation factor. The shortcomings of such a metric is that it
ignores all the local nets (i.e., nets connecting only pins in-
side a gcell and thus contributing nothing to global routing

overflow), which may cause detrimental local congestions,
too. Thus, the congestion information provided by global
routing may not be exact. If guided by global routing in-
formation that does not account for local congestion infor-
mation, placers are likely to generate placement results with
fewer global routing overflows but poor routability in real-
ity. Such a mismatch between the quality of a global routing
solution and the quality of a detailed routing solution has
been highlighted in [11–14].

However, it is infeasible to include in a placer a detailed
routing step to guide the placement optimization process. In
other words, it remains a big question mark how to generate
placement results that can be (detailed) routed easily.

In this paper, we present a new analytical placer for routability-
driven placement of mixed-size circuits. The goal is to achieve
routability without invoking a global router or a detailed
router. Two main contributions we make are:

(1) Pin density oriented (or more precisely, pin count ori-
ented) formulation for analytical placer.

The importance of pin density in guiding routability-driven
placement has been addressed in many previous works [10]
[8]. Instead of spreading cells, our placer just aims at even
pin distribution across the chip. The key idea here is that
a global placement solution that has even pin distribution
most likely would also have cells sufficiently spread out.

What is more important is that the pin count within a
region provides a good estimate of the routing requirement
within that region. Every pin is involved in some net. The
pin count can simultaneously account for global nets and
local nets in that region, i.e., it can estimate both global
routing demand and local routing demand. A global placer
guided by pin density thus may be more effective in elimi-
nating routing congestions.

Instead of resorting to placement refinement methods, we
accomplish even pin distribution by applying a new formu-
lation for analytical placer. The formulation is defined by
including a group of effective pin density constraints.

(2) Scaled smoothing method to cope with fixed macro
blocks.

Fixed blocks may have many adverse effects on placement
and routing. They are obstacles that affect cells’ movement
in global placement. In particular, if there are many overlaps
between cells and fixed blocks in a global placement result,
legalizing these cells will greatly perturb the even distribu-
tion of pins. For a more accurate and effective optimization
of the global placement solution for routability, the global
placement solutions must resemble a legal solution.

To solve this problem of significant overlaps between cells

and macro blocks, we adopt a scaled smoothing method.
By smoothing and properly scaling up the allocation of fixed
blocks, cells are kept away from macro blocks in global place-
ment such that cell displacement in the legalization step is
reduced.

Experimental results show that our pin density oriented
placer is effective in eliminating congested regions with high
pin density, and even pin distribution turns out to be greatly
helpful in improving the routability of circuits. We have
obtained the routing solutions for our placer’s results on
ISPD11 benchmark circuits by using a commercial router,
and a comparison is made with the results generated by Rip-
ple [7] and NTUplace [8] in ISPD11 contest. For seven out
of eight ISPD11 benchmark circuits, our placer’s results can
be routed in a shorter time and the routing solutions have
fewer routing violations. Meanwhile, on average, the routing
wirelength of our placer’s results is 8.84% and 5.42% shorter
compared to Ripple and NTUplace, respectively. Moreover,
the number of vertical vias is also reduced by over 5%.

The rest of the paper is organized as follows. Section 2
introduces the pin density oriented formulation. Section 3
discusses the scaled smoothing method, as well as the im-
plementation details of our placer. Section 4 briefly presents
the legalization and detailed placement techniques used in
our placer. Section 5 demonstrates experiment results: Sec-
tion 5.1 makes a comparison of the placement results gener-
ated by pin density oriented placer and cell density oriented
placer; Section 5.2 shows the routing solutions of different
placers’s results. Section 6 concludes the paper.

2. FORMULATION
As in other analytical placers, the problem of global place-

ment is formulated as a constrained optimization problem
in our analytical placer. The objective is to minimize wire-
length estimated with the summation of HPWL for all the
nets. Also, the whole circuit is partitioned into uniform
nonoverlapping rectangle bins, and a constraint is defined
for each bin so that not too many pins would be placed in
it.

The definitions used in the formulation are as follows:

N set of all nets;
C set of all cells;
B set of all uniform rectangle bins;
Fb area occupied by fixed macro blocks in bin b ∈ B;
Sb available area for placing cells in bin b ∈ B;
Pbc overlapping portion of cell c ∈ C in bin b ∈ B;
dc number of pins on cell c ∈ C;

wc, hc width, height of cell c ∈ C;
wb, hb width, height of bin b ∈ B;
(xc, yc) coordinates of the center of cell c ∈ C;
(xb, yb) coordinates of the center of bin b ∈ B;

tden target placement density;
avgpd average pin density of all cells

With the definitions above, we formulate global placement
problem as follows:

min HPWL(~x, ~y) (1)

s.t.
∑
c∈C

rcPbc(xc, yc) 6 avgpdSb ∀b ∈ B. (2)

All the non-differentiable functions in the formulation must
be estimated with smooth functions so that the minimiza-
tion problem could be solved with Newton-like methods.

The HPWL function is defined below, with non-differentiable
max and min functions:

HPWL =
∑
n∈N

(max
c∈n

{xc}−min
c∈n

{xc}+max
c∈n

{yc}−min
c∈n

{yc}).

Instead of the widely-used log-sum-exp function [15], we use
a different smoothing function to smooth HPWL function:

CHKS(x1, x2) = (
√

(x1 − x2)2 + α2 + x1 + x2)/2.

The two-variable function above can be used as a smooth
function for max(x1, x2), and its smoothness can be tuned
with factor α. In a nesting way, multiple-variable max, min
functions can also be smoothed with it. Details are discussed
in [16] about the properties of CHKS function.

The left hand side of the pin density constraint (2) gives
the potential of the number of pins that are placed in bin b.
The potential function Pbc(xc, yc) = hbc(xc)vbc(yc), which is
defined by the amount of overlap between cell c and bin b is
also non-differentiable. Here, hbc and vbc are the overlapping
portion of cell c and bin b in horizontal and vertical dimen-
sions, respectively. hbc(xc) can be smoothed with p(xc−xb),
where p(x) is a continuous differentiable “bell-shape” func-
tion defined below [2]:

p(x) =

 1− x2/(2w2
b), 0 ≤ |x| ≤ wb,

(|x| − 2wb)
2/2w2

b , wb ≤ |x| ≤ 2wb,
0, |x| ≥ 2wb.

vbc can be smoothed in the same way, too. Besides, rc in (2)
is a normalization factor such that

∑
b (rcPbc) = dc, i.e, cell

c contributes a total potential that is equal to the number
of pins on it.

The right hand side of (2) denotes the number of pins that
bin b is supposed to accommodate at most. It is defined as
the product of the average pin density of all the cells, avgpd,
and the available area in bin b, Sb:

avgpd =
∑
c∈C

dc

/∑
c∈C

(wchc) , Sb = tden(wbhb−Fb) ∀b ∈ B.

With pin density constraints incorporated in the objective
function as a weighted penalty term, the constrained opti-
mization problem (1)-(2) can be “solved” as a sequence of
unconstrained optimization problems:

min HPWL + λ
∑
b∈B

(max(avgpdSb − rcPbc, 0))2. (3)

The weight factor λ is doubled iteratively in the sequence,
and with each λ, the unconstrained optimization problem is
solved with L-BFGS-G, a quasi-Newton solver with bound-
ary constraints [17]. Note that the two-variable max func-
tion in (3) is also smoothed with the CHKS function.

As a comparison, many existing analytical placers are de-
fined with cell density constraints, as shown below:∑

c∈C

kcP (b, c) 6 Sb ∀b ∈ B. (4)

where kc is a normalization factor such that cell c contributes
a total potential that is equal to its area.

In the special case when the pin density on all cells are
the same, constraints (4) are equivalent to constraints (2).
However, in reality, pin densities can vary. For instance, on
ISPD11 benchmark, superblue4, the pin density of a cell,
calculated as the number of pins on it divided by its area,

(a) (b)

(c) (d)

Figure 1: Illustration of Gaussian smoothing applied on
ISPD11 benchmark superblue4: (a) Plot of fixed macro
blocks; (b)Contour of Fb/(wbhb); (c) Contour of F ′

b/(wbhb)
with σ=647; (d) Contour of F ′

b/(wbhb) with σ=80.8

varies from 0.0024 to 0.1111, whereas avgpd of all cells equals
0.0299. With such variations in pin densities, it is possible
that a placement solution that is optimized to meet con-
straint (4) may have even cell distribution, but have regions
of uneven pin distribution. Such uneven pin distribution
usually results in routing violations in the detailed routing
stage. One such example is given in Section 5.

3. SCALED SMOOTHING METHOD
One main feature of modern circuit designs is the increas-

ing number of fixed blocks, such as the analog blocks, mem-
ory blocks, etc., on the die. As mentioned, fixed blocks have
at least two negative effects in placement. First, in global
placement, they are obstacles preventing cells from spread-
ing. Second, if many cells end up being placed on macro
blocks, legalizing these cells may result in great perturba-
tion in pin distribution, degrading the quality of placement
solutions.

The plot of fixed blocks on superblue4 is shown in Fig. 1(a).
The contour of the normalized Fb across the chip is also
given in Fig. 1(b). As pointed out in [3], with so many steep
“mountains” on the die, it is hard for cells to spread in the
optimization process. Moreover, if a cell is unfortunately
placed at the top of a large “flat” mountain and not close
to boundaries, it will likely be trapped in local optimality
and never get off the mountain, because no matter to which
direction it moves, its contribution to the penalty term in
(3) is always the same.

To overcome the two challenges imposed by the presence
of fixed blocks, our placer adopts the Gaussian smoothing
technique proposed in [3]. The smoothed allocation of fixed
blocks in each bin, F ′

b, is calculated with the 2-D Gaussian

function:

G(x, y) =
1

2πσ2
e
− x2+y2

2σ2 .

F ′
b’s are normalized such that

∑
b F ′

b =
∑

b Fb. Fig. 1(c)
shows the contour of F ′

b, which is smoother than Fb. Also,
the smoothness can be tuned by σ in the Gaussian function.
Larger sigma leads to smoother F ′

b. Conversely, when σ is
sufficiently small, F ′

b is nearly equivalent with Fb, as shown
in Fig. 1(d). As in [3], we make use of Gaussian smoothing
by replacing Fb with F ′

b in (3). At the beginning, F ′
b is

calculated with a large σ equal to the half width of the chip.
Then σ decreases gradually in the optimization process.

With the application of Gaussian smoothing, cells are
spread more smoothly during optimization. However, the
other challenge caused by the presence of fixed blocks is not
totally overcome. Many cells may still end up overlapping
with blocks, as shown in Fig. 2(a). One of the reasons is that
after smoothing, many fully occupied bins (i.e., bins with
Fb = wbhb) have temporary empty spaces as F ′

b < wbhb.
Thus, many cells may be attracted to the top of blocks, and
then trapped there after σ is decreased.

To solve this problem, in our implementation, we choose
to properly scale up F ′

b during optimization, so that most
fully occupied bins have no empty space available for cells.
To maintain the smoothness of fixed-block allocation, we
scale up F ′

b of all bins with the same factor. After Gaussian
smoothing, most empty bins (i.e., bins with Fb = 0) have
F ′

b close to 0, except those around fixed blocks. Thus, the
scale-up has little influence on most empty bins, and the
placement of cells in block-free areas will not be affected
significantly. Meanwhile, the increased F ′

b of bins around
macro blocks may also be positive in helping keep cells away
from future routing obstacles.

On the other hand, the scale-up factor cannot be set too
large to influence too many bins around blocks. Also, the
scaled smoothing does no good to cell spreading. Therefore,
our global placement algorithm is implemented as a two-
stage work:

Stage 1: Cell spreading. In this stage, we use large σ
and do not scale up F ′

bs. Instead, we also apply another
smoothing technique, called level smoothing [3]. This stage
continues until cells are well spread across the chip.

Stage 2: Relocating cells overlapping with blocks. This
stage is composed with several iterations. In the first itera-
tion, σ is set to be large enough so that no “flat” top would
form on large blocks. Then, based on the Gaussian smooth-
ing results, a scale factor is set such that β% fully occupied
bins have no empty space. With the scaled-up F ′

b, optimiza-
tion problem (1)-(2) is solved. Then, σ is halved and a new
iteration starts. This iterative process continues until σ is
small enough. Note that after each iteration, β is increased,
and at the end, it is close to 100.

An example is given in Fig. 2 to illustrate the effect of
scaled smoothing. Both global placement results in it are
generated with the two-stage global placement algorithm.
The only difference is that the scale-up factor is always set
to be 1 for (a). Apparently, much fewer cells end up over-
lapping with blocks in (b). Only 0.08% of cells still overlaps
with blocks in (b), whereas in (a), 7.71% of cells overlaps
with blocks. As a consequence, the average displacement of
each cell after legalization is only 22.9 for (b), nearly half
of that in (a). The percentages of cells overlapping with
macro blocks in our global placement results of eight ISPD11

(a) (b)

Figure 2: Illustration of the effect of scaled smoothing on
superblue4. Plots of global placement results (a)Without
scaled smoothing, cells on blocks 7.71%, average displace-
ment 45.6; (b)With scaled smoothing, cells on blocks 0.08%,
average displacement 22.9.

Table 1: Percentages of cells overlapping with macros blocks
in our global placement results of ISPD11 benchmark cir-
cuits

sb1 sb2 sb4 sb5 sb10 sb12 sb15 sb18

% 0.38 0.13 0.08 0.29 0.69 0.03 0.43 0.02

benchmarks are listed in Table 1.

4. LEGALIZATION & DETAILED PLACE-
MENT

Our legalizer is similar to the Abacus algorithm [18]. From
left to right, cells are placed into legal positions one by one.
Each cell is placed in a row such that inserting the cell in the
row leads to the smallest displacement. Instead of packing
cells tightly from left to right in each row, in our imple-
mentation, we place cells as close to their original position
as possible, so that the perturbance to pin distribution is
reduced. We apply the sliding window technique [9] for de-
tailed placement to further optimize the placement.

5. EXPERIMENTAL RESULTS
By applying the two-stage global placement algorithm dis-

cussed in Section 3, followed by the legalizer & detailed
placer introduced in Section 4, we have generated placement
results for the eight ISPD11 benchmark circuits [19]. Target
density tden is set to be 0.8 for all benchmark circuits.

All placement results generated are evaluated by the com-
mercial router Wroute [20] (version 3.1.61) for their routabil-
ity quality. To do that, we used the translator developed
in [21]. Placement results are translated into LEF/DEF files,
which are then fed into Wroute for global and detailed rout-
ing under some 28nm design rules (also specified in [21]).
We ran Wroute for two iterations to obtain the final de-
tailed routing solutions. In the first iteration, Wroute is run
in the default routing mode. Wroute may report that some
nets as unroutable after global routing, and ignores these
unroutable nets in detail routing. In the second iteration,
Wroute is run in the post routing mode, which tries to route
all nets and repairs routing violations. In each iteration, the
detailed routing continues until all violations are repaired,

(a) (b)

(c) (d)

Figure 3: For benchmark superblue4: (a)Plot of placement
result with cell density constraints; (b)Plot of placement
result with pin density constraints; (c) Contour of pin count
normalized by avgpdwbhb for bins in the red box in (a); (d)
Contour of pin count normalized by avgpdwbhb for bins in
the same area in (b)

no further improvement can be made, or a time limit of 24
hours is reached.

5.1 Comparison of formulations
We compare the cell density oriented formulation (1)(4)

and the pin density oriented formulation (1)(2) using ISPD11
benchmark circuit superblue4. The placement result in Fig. 3(a)
is generated with cell density oriented formulation, whereas
the placement result in Fig. 3(b) is generated with pin den-
sity oriented formulation. The same placement steps intro-
duced in Sections 2–4 are used in the generation of both
results.

Detailed routing solutions of both results differ a lot in
terms of the number of routing violations. (b) has only
201 violations whereas (a) has over 8800 violations, most of
which appear in the red box marked in the figure.

Evidently, cells in (a) are more evenly distributed than
(b). However, in reality, pins are not evenly distributed in
it. The pin distribution in the red box highlighted in (a),
which has 100×100 bins, is given in Fig. 3(c). There is one
large congested region with high pin density near the bottom
of the box. In fact, most violations in the routing solution
of (a) occur in this congested region.

In contrast, as shown in Fig. 3(d), the pin count contour of
the same highlighted area in (a) reveals that pins are more
evenly distributed. There are also some small congested
regions. However, because they are scattered, the negative
effect on routing is not significant.

5.2 Routing solutions
Now, we present a comparison with Ripple [7] and NTU-

place [8]. Ripple is chosen because it won the 2011 ISPD

Table 2: Comparison of detailed routing solutions for the placement results generated by our placer,
Ripple [7], and NTUplace [8].

Our placer Ripple NTUplace

Vio WL(e8) Via(e6) T Tp Vio WL(e8) Via(e6) T Vio WL(e8) Via(e6) T

sb1 24 3.524 9.843 2:47 5:26 81 3.369 10.226 3:33 5600 3.671 11.188 9:10

sb2 669 7.230 12.410 4:53 6:06 906 7.883 12.748 5:31 178296 8.038 14.174 38:40

sb4 201 2.686 6.484 2:02 3:12 252 2.759 6.754 2:33 371740 2.604 7.177 41:18

sb5 74830 4.563 9.388 13:29 2:52 766 4.196 9.231 4:16 9756 4.969 10.316 10:47

sb10 93 6.789 13.316 5:36 4:15 1085 6.786 13.717 6:32 43400 6.562 14.846 18:57

sb12 113 4.257 16.336 4:12 12:54 140 5.560 17.837 5:35 14000610 4.720 2.246 53:55

sb15 30 3.717 12.365 3:16 6:39 88 4.550 13.389 3:56 91470 4.050 13.660 21:56

sb18 8988 2.190 6.665 2:03 3:28 65367 3.245 7.756 10:37 207641 2.238 7.309 10:55

Imp. – – – – – – 8.84% 5.29% – – 5.42% 16.49% –

contest, which measures the quality of a placement solution
based on global routing overflow. NTUplace is chosen be-
cause it generally has better routed wirelength. Because of a
lack of space, we could not present the results from the other
two top placers in the contest, mPL [1] and SimPLR [6].

The routing solutions for our placer’s results are shown
in Table 2. “Vio”, “WL”, “Via” are the number of routing
violations, wirelength, the number of vertical vias in the fi-
nal detailed routing results, respectively; “T” is the CPU
time (hour:min) taken by Wroute in the 2-iteration rout-
ing process. Table 2 also contains the routing solutions for
the placement results generated by Ripple and NTUplace in
ISPD11 contest [19].

For seven out of eight benchmark circuits, the routing
run-time of our placer’s results is shorter, and the routing
solutions have fewer violations. Also, the bottom row in Ta-
ble 2 shows the average improvement our placement results
achieve over others in routing wirelength and the number
of vias. On average, the routing wirelength of our place-
ment results is 8.85%, 5.15% smaller than those of Ripple
and NTUplace, respectively, whereas the number of vertical
vias is also reduced by over 5%. Note that for each bench-
mark, the smallest number of violations and the shortest
wirelength are shown in bold in table.

For six out eight benchmark circuits, our placer’s results
can be routed with only a few routing violations, while su-
perblue5 and superblue18 are two exceptions. However, by
applying different parameters in scaled smoothing according
to the features of macro blocks on both circuits, we can also
get better results for superblue5 and superblue18 with only
520, 3508 routing violations, respectively.

Table 3 also shows a comparison of global routing met-
rics for all placement results. “NUN” gives the number of
unroutable nets that Wroute reports after global routing in
the first iteration. “OC” gives the percentage of overcapac-
ity gcells after both iterations. In terms of both metrics, the
placement results of our placer also outperform others for
most benchmarks.

So far our analytical placer does not adopt the multilevel
placement technique [1] [3]. As a result, for the eight bench-
marks, our placer has longer placement run-times, which
are listed in the “Tp” column (hour:min) in Table 2. While
the placement run-times may look long, the total place-and-
route run-time may be shorter compared with other placers,
while the routability quality of the results improves, too.
One of our future work is to increase the scalability of our

Table 3: Comparison of global routing metrics of the place-
ment results generated by different placers

Our placer Ripple NTUplace

NUN OC(%) NUN OC(%) NUN OC(%)

sb1 32 5.29 2069 5.65 2249 7.20

sb2 199 3.57 1087 3.63 1265 4.88

sb4 0 6.00 1126 6.07 5606 7.04

sb5 661 3.96 1762 3.85 2897 5.19

sb10 389 4.64 657 4.99 507 6.35

sb12 0 15.34 2513 16.59 16203 23.02

sb15 3 12.37 1089 14.46 3765 14.1

sb18 524 8.72 2839 11.72 2351 12.21

Imp. – – – 10.56% – 25.13%

placer by adopting the multilevel placement technique.

6. CONCLUSION
A new analytical placer applicable for mixed-size circuits

is proposed in this paper. To help alleviate possible routing
congestions, our placer makes use of a new analytical place-
ment formulation defined with pin density constraints. In
addition, our placer adopts a scaled smoothing technique to
avoid cells overlapping with macro blocks in global place-
ment results, due to which the perturbance to pin distribu-
tion in legalization stage can be reduced.

Experiment results on ISPD11 benchmark circuits show
that our pin density oriented placer manages to generate
placement results with good routability. Compared with
the placement results of other routability-driven placers, in
most cases, detailed routing solutions with fewer violations
can be generated for our placer’s results in a shorter time.
On average, the routing solutions also have smaller routing
wirelength and fewer vertical vias.

7. REFERENCES
[1] Tony F. Chan, Jason Cong, Joseph R Shinnerl,

Kenton Sze, and Min Xie. mpl6: enhanced multilevel
mixed-size placement. In Proceedings of the 2006
International Symposium on Physical Design, ISPD
’06, 2006.

[2] Andrew B. Kahng, Sherief Reda, and Qinke Wang.
APlace: a general analytic placement framework. In

Proceedings of the 2005 International Symposium on
Physical Design, ISPD ’05, pages 233–235, 2005.

[3] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu,
Hsin-Chen Chen, and Yao-Wen Chang. Ntuplace3: An
analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints. Trans.
Comp.-Aided Des. Integ. Cir. Sys., 27(7):1228–1240,
July 2008.

[4] Natarajan Viswanathan, Charles J. Alpert, Cliff Sze,
Zhuo Li, Gi-Joon Nam, and Jarrod A. Roy. The
ISPD-2011 routability-driven placement contest and
benchmark suite. In Proceedings of the 2011
International Symposium on Physical Design, ISPD
’11, pages 141–146, 2011.

[5] Natarajan Viswanathan, Charles Alpert, Cliff Sze,
Zhuo Li, and Yaoguang Wei. The DAC 2012
routability-driven placement contest and benchmark
suite. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, pages 774–782,
2012.

[6] Myung-Chul Kim, Jin Hu, Dong-Jin Lee, and Igor L.
Markov. A SimPLR method for routability-driven
placement. In Proceedings of the International
Conference on Computer-Aided Design, ICCAD ’11,
pages 67–73, 2011.

[7] Xu He, Tao Huang, Linfu Xiao, Haitong Tian, Guxin
Cui, and Evangeline F. Y. Young. Ripple: an effective
routability-driven placer by iterative cell movement. In
Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’11, pages 74–79,
2011.

[8] Meng-Kai Hsu, Sheng Chou, Tzu-Hen Lin, and
Yao-Wen Chang. Routability-driven analytical
placement for mixed-size circuit designs. In
Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’11, pages 80–84,
2011.

[9] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden.
Routability-driven placement and white space
allocation. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 26(5):858–871, May
2007.

[10] Jarrod A. Roy, Natarajan Viswanathan, Gi-Joon
Nam, Charles J. Alpert, and Igor L. Markov. CRISP:
congestion reduction by iterated spreading during
placement. In Proceedings of the 2009 International
Conference on Computer-Aided Design, ICCAD ’09,
pages 357–362, 2009.

[11] Taraneh Taghavi, Charles Alpert, Andrew Huber,
Zhuo Li, Gi-Joon Nam, and Shyam Ramji. New
placement prediction and mitigation techniques for
local routing congestion. In Proceedings of the
International Conference on Computer-Aided Design,
ICCAD ’10, 2010.

[12] Yaoguang Wei, Cliff Sze, Natarajan Viswanathan,
Zhuo Li, Charles J. Alpert, Lakshmi Reddy,
Andrew D. Huber, Gustavo E. Tellez, Douglas Keller,
and Sachin S. Sapatnekar. GLARE: global and local
wiring aware routability evaluation. In Proceedings of
the 49th Annual Design Automation Conference, DAC
’12, 2012.

[13] Charles J. Alpert, Zhuo Li, Michael D. Moffitt,

Gi-Joon Nam, Jarrod A. Roy, and Gustavo Tellez.
What makes a design difficult to route. In Proceedings
of the 19th international symposium on Physical
design, ISPD ’10, 2010.

[14] Zhuo Li, Charles J. Alpert, Gi-Joon Nam, Cliff Sze,
Natarajan Viswanathan, and Nancy Y. Zhou. Guiding
a physical design closure system to produce
easier-to-route designs with more predictable timing.
In Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, 2012.

[15] W. Naylor et al. Non-linear optimization system and
method for wire length and delay optimization for an
automatic electric circuit placer. U.S. Patent 6301693,
Oct. 2001.

[16] C. Li and C.-K. Koh. Recursive function smoothing of
half-perimeter wirelength for analytical placement. In
Proc. International Symposium on Quality Electronic
Design, pages 829–834, 2007.

[17] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge
Nocedal. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained
optimization. ACM Trans. Math. Softw.,
23(4):550–560, December 1997.

[18] Peter Spindler, Ulf Schlichtmann, and Frank M.
Johannes. Abacus: fast legalization of standard cell
circuits with minimal movement. In Proceedings of the
2008 International Symposium on Physical Design,
ISPD ’08, 2008.

[19] http://www.ispd.cc/contests/11/ispd2011 contest.
html.

[20] http://www.cadence.com/products/di/soc encoun
ter/.

[21] Authors unavailable. Case study for placement
solutions in ISPD11 and DAC12 routablity-driven
placement contests (to be published).

	Purdue University
	Purdue e-Pubs
	4-18-2013

	An Effective Routability-driven Placer for Mixed-size Circuit Designs
	Shuai Li
	Cheng-Kok Koh

