205 research outputs found
Detection of alfa-amylase inhibitors by a zymography method, performed in isoelectric focusing electrophoretic PhastGels.
Made available in DSpace on 2018-06-07T00:54:19Z (GMT). No. of bitstreams: 1
ID288091.PDF: 374985 bytes, checksum: c7206a960b6fb7dace01b9ed9f0ac58e (MD5)
Previous issue date: 2008-01-2
Digestive alfa-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors.
Made available in DSpace on 2018-06-11T17:30:51Z (GMT). No. of bitstreams: 1
SP19699ID31112.pdf: 84718 bytes, checksum: c53cd6bb30277679e2441d5fcc5ad7e9 (MD5)
Previous issue date: 2009-03-05bitstream/item/178427/1/SP-19699-ID-31112.pd
Geologising urban political ecology (UPE): the urbanisation of sand in Accra, Ghana
This paper makes a call for an urban political ecology (UPE) which engages more extensively with Earth’s geological formations. As a material at the centre of global urbanisation process, sand is offered as a geological entry point. The paper presents an analysis of the urbanisation of sand, or the ways in which sand is brought into the urban realm, grounding this reading in Accra—a growing city on Ghana’s Atlantic coast. Drawing from 14 months of ethnographic fieldwork, the paper charts the socio-natural politics through which sand is first unearthed from the edges of the city—an extractive processes otherwise known as “sand winning” in Ghana. By examining the forms of power which govern uneven revenue flows to communities, the displacement of farming groups, the widespread loss of farmland and a contested regime of governance, the analysis exposes the socio-natural politics through which the city’s geological baseline is first unearthed
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Tracing the Distribution of European Lactase Persistence Genotypes Along the Americas
In adulthood, the ability to digest lactose, the main sugar present in milk of mammals, is a phenotype (lactase persistence) observed in historically herder populations, mainly Northern Europeans, Eastern Africans, and Middle Eastern nomads. As the –13910∗T allele in the MCM6 gene is the most well-characterized allele responsible for the lactase persistence phenotype, the –13910C > T (rs4988235) polymorphism is commonly evaluated in lactase persistence studies. Lactase non-persistent adults may develop symptoms of lactose intolerance when consuming dairy products. In the Americas, there is no evidence of the consumption of these products until the arrival of Europeans. However, several American countries’ dietary guidelines recommend consuming dairy for adequate human nutrition and health promotion. Considering the extensive use of dairy and the complex ancestry of Pan-American admixed populations, we studied the distribution of –13910C > T lactase persistence genotypes and its flanking haplotypes of European origin in 7,428 individuals from several Pan-American admixed populations. We found that the –13910∗T allele frequency in Pan-American admixed populations is directly correlated with allele frequency of the European sources. Moreover, we did not observe any overrepresentation of European haplotypes in the –13910C > T flanking region, suggesting no selective pressure after admixture in the Americas. Finally, considering the dominant effect of the –13910∗T allele, our results indicate that Pan-American admixed populations are likely to have higher frequency of lactose intolerance, suggesting that general dietary guidelines deserve further evaluation across the continent
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
Geography and ecology shape the phylogenetic composition of Amazonian tree communities.
Aim Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location Amazonia. Taxon Angiosperms (Magnoliids; Monocots; Eudicots). Methods Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.Na publicação: Joice Ferreira
Persistent effects of pre-Columbian plant domestication on Amazonian forest composition
The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely to be hyperdominant than non-domesticated species. Across the basin the relative abundance and richness of domesticated species increases in forests on and around archaeological sites. In southwestern and eastern Amazonia distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples
TRY plant trait database - enhanced coverage and open access
This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe
- …