125 research outputs found

    Analysis of carrier injection under high temperature AC operation in top gate IGZO TFTs

    Get PDF
    Abstract– With the development of high-quality displays, metal oxides gradually become a popular active layer in TFTs [1]. In this work, InGaZnO thin film transistors with double-layer oxide are investigated. The oxide layer is divided into top and bottom layers. We improve the characteristics and reliability of the device through the design of double-layer oxide stack structure. The bottom oxide layer is deposited with a lower SiH4 flow rate, and the top oxide layer is deposited with a higher SiH4 flow rate. By increasing the SiH4 flow rate of the top oxide layer, two effects can be achieved. Firstly, it is beneficial for speeding up the film deposition process. Furthermore, the hydrogen residue passivates the dangling bonds in the oxide layer and increases the bonding amount of silanol groups, SiO-H, and achieve hydrogen channel doping [2]. By modulating the SiH4 flow rate of the top oxide layer, the basic characteristics of the devices and the reliability under alternating current (AC) operation are improved. In this work, we use three waveform types of switch process to analyze the degradation under AC stress, and the physic mechanism is proposed subsequently [3-4]. After AC stress, the top oxide layer with higher SiH4 flow rate has a smaller threshold voltage right shift, and the reliability is significantly improved. Please click Download on the upper right corner to see the full abstract

    Brensocatib, an oral, reversible inhibitor of dipeptidyl peptidase 1, mitigates interferon-α-accelerated lupus nephritis in mice

    Get PDF
    Neutrophils have been implicated in initiating and perpetuating systemic lupus erythematosus and the resultant kidney damage in lupus nephritis (LN) patients, in part through an excessive release of neutrophil serine proteases (NSPs). NSP zymogens are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation and released by mature neutrophils in response to inflammatory stimuli. Thus, a potential strategy to attenuate disease progression in LN would be to inhibit DPP1. We tested whether brensocatib, a highly selective and reversible DPP1 inhibitor, could mitigate LN progression in an interferon-alpha (IFNα)-accelerated NZB/W F1 mouse model. To confirm brensocatib’s pharmacodynamic effect on NSPs in this mouse strain, repeated dose studies were conducted for 7 and 14 days in naĂŻve NZB/W F1 mice via oral gavage twice a day. Brensocatib at 2 and 20 mg/kg/day achieved a significant reduction in bone marrow NSP activities after 7 days of daily administration. To initiate LN disease progression, the mice were injected with an IFNα-expressing adenovirus. After 2 weeks, three brensocatib doses (or vehicle) were administered for 6 more weeks. Throughout the 8-week study, brensocatib treatment (20 mg/kg/day) significantly reduced the occurrence of severe proteinuria compared to the vehicle control. Brensocatib treatment also entailed a significant reduction in the urine albumin-to-creatinine ratio, indicating decreased kidney damage, as well as a significant reduction in blood urea nitrogen level, suggesting improved renal function. Based on kidney histopathology analysis, brensocatib treatment significantly lowered both the renal tubular protein score and the nephropathy score compared to the vehicle group. A trend towards reduced glomerulonephritis score with brensocatib treatment was also observed. Lastly, brensocatib significantly reduced LN mouse kidney infiltration by various inflammatory cells. In conclusion, these results suggest that brensocatib alters disease progression in LN mice and warrant further evaluation of DPP1 inhibition in LN

    Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review

    Get PDF
    Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composite

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps : Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting similar to 2000 PGCCs in J = 1-0 transitions of CO isotopologues and similar to 1000 PGCCs in 850 mu m continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are similar to 6200 M-circle dot, similar to 12 pc, and similar to 500 M-circle dot pc(-1), respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (beta) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.Peer reviewe

    SCOPE : SCUBA-2 Continuum Observations of Pre-protostellar Evolution - survey description and compact source catalogue

    Get PDF
    We present the first release of the data and compact-source catalogue for the JCMT Large Program SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE). SCOPE consists of 850 mu m continuum observations of 1235 Planck Galactic Cold Clumps (PGCCs) made with the Submillimetre Common-User Bolometer Array 2 on the James Clerk Maxwell Telescope. These data are at an angular resolution of 14.4 arcsec, significantly improving upon the 353 GHz resolution of Planck at 5 arcmin, and allowing for a catalogue of 3528 compact sources in 558 PGCCs. We find that the detected PGCCs have significant sub-structure, with 61 per cent of detected PGCCs having three or more compact sources, with filamentary structure also prevalent within the sample. A detection rate of 45 per cent is found across the survey, which is 95 per cent complete to Planck column densities of N-H2 > 5 x10(21) cm(-2). By positionally associating the SCOPE compact sources with young stellar objects, the star formation efficiency, as measured by the ratio of luminosity to mass, in nearby clouds is found to be similar to that in the more distant Galactic Plane, with the column density distributions also indistinguishable from each other.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska LĂ€karesĂ€llskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
    • 

    corecore