160 research outputs found

    In silico approach to quantify nucleus self‑deformation on micropillared substrates

    Get PDF
    Considering the major role of confined cell migration in biological processes and diseases, such as embryogenesis or metastatic cancer, it has become increasingly important to design relevant experimental set-ups for in vitro studies. Microfluidic devices have recently presented great opportunities in their respect since they offer the possibility to study all the steps from a suspended to a spread, and eventually crawling cell or a cell with highly deformed nucleus. Here, we focus on the nucleus self-deformation over a micropillared substrate. Actin networks have been observed at two locations in this set-up: above the nucleus, forming the perinuclear actin cap (PAC), and below the nucleus, surrounding the pillars. We can then wonder which of these contractile networks is responsible for nuclear deformation. The cytoplasm and the nucleus are represented through the superposition of a viscous and a hyperelastic material and follow a series of processes. First, the suspended cell settles on the pillars due to gravity. Second, an adhesive spreading force comes into play, and then, active deformations contract one or both actin domains and consequently the nucleus. Our model is first tested on a flat substrate to validate its global behaviour before being confronted to a micropillared substrate. Overall, the nucleus appears to be mostly pulled towards the pillars, while the mechanical action of the PAC is weak. Eventually, we test the influence of gravity and prove that the gravitational force does not play a role in the final deformation of the nucleus

    A Coupled Friction-Poroelasticity Model of Chimneying Shows that Confined Cells Can Mechanically Migrate Without Adhesions

    Get PDF
    Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free confined environment or simply to achieve a higher migration speed, cells can adopt a very interesting bleb-based migration mode called “chimneying”. This mode rests on the sharp synchronization between the active contraction of the cells uropod and the passive friction force between the cell and the confining surface. In this paper, we propose a one dimensional poroelastic model of chimneying which considers the active strains of the cell, but, as an improvement with respect to our previous works, the synchronization between such strains and the friction forces developed by the cell and necessary to move forward is self-determined. The present work allows to deepen our knowledge on chimneying which is still poorly understood from a mechanical point of view. Furthermore, our results emphasize the key role of poroelasticity in bleb formation and give new insights on the location and the time-synchronization of the friction force. Further development of this exploratory work could provide a major tool to test hypotheses beforehand and thus focus future experiments on mechanically relevant ones

    Digital adherence technologies for the management of tuberculosis therapy: mapping the landscape and research priorities

    Get PDF
    Poor medication adherence may increase rates of loss to follow-up, disease relapse and drug resistance for individuals with active tuberculosis (TB). While TB programmes have historically used directly observed therapy (DOT) to address adherence, concerns have been raised about the patient burden, ethical limitations, effectiveness in improving treatment outcomes and long-term feasibility of DOT for health systems. Digital adherence technologies (DATs)-which include feature phone-based and smartphone-based technologies, digital pillboxes and ingestible sensors-may facilitate more patient-centric approaches for monitoring adherence, though available data are limited. Depending on the specific technology, DATs may help to remind patients to take their medications, facilitate digital observation of pill-taking, compile dosing histories and triage patients based on their level of adherence, which can facilitate provision of individualised care by TB programmes to patients with varied levels of risk. Research is needed to understand whether DATs are acceptable to patients and healthcare providers, accurate for measuring adherence, effective in improving treatment outcomes and impactful in improving health system efficiency. In this article, we describe the landscape of DATs that are being used in research or clinical practice by TB programmes and highlight priorities for researc

    High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells

    Get PDF
    The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.This work was supported by awards from the National Institutes of Health [R01 HL082792 and U54 CA210184 to JL], the Department of Defense Breast Cancer Research Program [Breakthrough Award BC150580 to JL], the National Science Foundation [CBET-1254846 and MCB-1715606 to JL; GRFP- 2014163403 to GRF], La Ligue contre le cancer [REMX17751 to PMD] the Fondation ARC [PDF20161205227 to PMD], and a ministerial doctoral fellowship of Paris Saclay University to SDM. This work was performed in part at Cornell NanoScale Facility (CNF), an NNCI member supported by NSF Grant NNCI- 1542081. The authors thank Elisa di Pasquale and Gianluigi Condorelli for the human iPSCs and laminopathy patient fibroblasts, Colin Stewart for the lamin A/C-deficient and wild- type MEFs. The authors thank Karine Guevorkian and Francoise Brochard for helpful discussions

    The FANC pathway is activated by adenovirus infection and promotes viral replication-dependent recombination

    Get PDF
    Deciphering the crosstalk between a host cell and a virus during infection is important not only to better define viral biology but also to improve our understanding of cellular processes. We identified the FANC pathway as a helper of viral replication and recombination by searching for cellular targets that are modified by adenovirus (Ad) infection and are involved in its outcome. This pathway, which is involved in the DNA damage response and checkpoint control, is altered in Fanconi anaemia, a rare cancer predisposition syndrome. We show here that Ad5 infection activates the FANC pathway independent of the classical DNA damage response. Infection with a non-replicating Ad shows that the presence of viral DNA is not sufficient to induce the monoubiquitination of FANCD2 but still activates the DNA damage response coordinated by phospho-NBS1 and phospho-CHK1. E1A expression alone fails to induce FANCD2 monoubiquitination, indicating that a productive viral infection and/or replication is required for FANC pathway activation. Our data indicate that Ad5 infection induces FANCD2 activation to promote its own replication. Specifically, we show that FANCD2 is involved in the recombination process that accompanies viral DNA replication. This study provides evidence of a DNA damage-independent function of the FANC pathway and identifies a cellular system involved in Ad5 recombination

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/
    corecore