7 research outputs found

    Modeling the electrical power and energy consumption of automated guided vehicles to improve the energy efficiency of production systems

    Get PDF
    Due to the advancing energy system transformation and the increasingly complex and dynamic environment in which factories have to operate, the energy efficiency and flexible design of production systems are becoming more important. Since the use of automated guided vehicles is a promising approach to enhance the flexibility of intralogistics, their electrical power requirements are analyzed. Based on the measurement data obtained, different movement modules of an automated guided vehicle are identified and then modeled using physical laws. These movement modules are the translatory movement, rotary movement, and the lifting and lowering of the load-carrying platform. The measurement data show, for example, that the energy requirement for translational and rotational movement increases in relation to the payload weight. At the same time, however, it is also shown that an increase in speed of the automated guided vehicle leads to a lower energy requirement, although the power requirement grows. Consequently, one result is that an automated guided vehicle works most efficiently when the maximum payload is transported at the highest speed. With regard to the lifting and lowering of loads, the result is an increasing energy requirement depending on the payload weight. The comparison between the collected measurement data and the outcomes of the implemented simulation model shows only minor deviations. Thus, the implemented simulation model of automated guided vehicles can be used with regard to their electrical power consumption, for example, in production planning to comprehensively raise the energy efficiency of production systems

    References

    No full text

    A survey of the Van Hove scenario for high-tc superconductivity with special emphasis on pseudogaps and striped phases

    No full text
    corecore