4,932 research outputs found

    Water waves generated by the translatory and oscillatory surface disturbance

    Get PDF
    The problem under consideration is that of two-dimensional gravity waves in water generated by a surface disturbance which oscillates with frequency Ω/2π and moves with constant rectilinear velocity U over the free water surface. The present treatment may be regarded as a generalization of a previous paper by De Prima and Wu (Ref. 1) who treated the surface waves due to a disturbance which has only the rectilinear motion. It was pointed out in Ref. 1 that the dispersive effect, not the viscous effect, plays the significant role in producing the final stationary wave configuration, and the detailed dispersion phenomenon clearly exhibits itself through the formulation of a corresponding initial value problem. Following this viewpoint, the present problem is again formulated first as an initial value problem in which the surface disturbance starts to act at a certain time instant and maintains the prescribed motion thereafter. If at any finite time instant the boundary condition is imposed that the resulting disturbance vanishes at infinite distance (because of the finite wave velocity), then the limiting solution, with the time oscillating term factored out, is mathematically determinate as the time tends to infinity and also automatically has the desired physical properties. From the associated physical constants of this problem, namely Ω, U, and the gravity constant g, a nondimensional parameter of importance is found to be a = 4ΩU/g. The asymptotic solution for large time shows that the space distribution of the wave trains are different for 0 1. For 0 1, two of these waves are suppressed, leaving two waves in the downstream. At a = 1, a kind of "resonance" phenomenon results in which the amplitude and the extent in space of one particular wave both increase with time at a rate proportional to t^(1/2). Two other special cases: (1) Ω → 0 and U > 0, (2) U = 0, Ω > 0 are also discussed; in these cases the solution reduces to known results

    A wake model for free-streamline flow theory. Part 1. Fully and partially developed wake flows and cavity flows past an oblique flat plate

    Get PDF
    A wake model for the free-streamline theory is proposed to treat the two-dimensional flow past an obstacle with a wake or cavity formation. In this model the wake flow is approximately described in the large by an equivalent potential flow such that along the wake boundary the pressure first assumes a prescribed constant under-pressure in a region downstream of the separation points (called the near-wake) and then increases continuously from this under-pressure to the given free-stream value in an infinite wake strip of finite width (the far-wake). Application of this wake model provides a rather smooth continuous transition of the hydrodynamic forces from the fully developed wake flow to the fully wetted flow as the wake disappears. When applied to the wake flow past an inclined flat plate, this model yields the exact solution in a closed form for the whole range of the wake under-pressure coefficient

    Hydromechanics of swimming propulsion. part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid

    Get PDF
    The most effective movements of swimming aquatic animals of almost all sizes appear to have the form of a transverse wave progressing along the body from head to tail. The main features of this undulatory mode of propulsion are discussed for the case of large Reynolds number, based on the principle of energy conservation. The general problem of a two-dimensional flexible plate, swimming at arbitrary, unsteady forward speeds, is solved by applying the linearized inviscid flow theory. The large-time asymptotic behaviour of an initial-value harmonic motion shows the decay of the transient terms. For a flexible plate starting with a constant acceleration from at rest, the small-time solution is evaluated and the initial optimum shape is determined for the maximum thrust under conditions of fixed power and negligible body recoil

    Generation of upstream advancing solitons by moving disturbances

    Get PDF
    This study investigates the recently identified phenomenon whereby a forcing disturbance moving steadily with a transcritical velocity in shallow water can generate, periodically, a succession of solitary waves, advancing upstream of the disturbance in procession, while a train of weakly nonlinear and weakly dispersive waves develops downstream of a region of depressed water surface trailing just behind the disturbance. This phenomenon was numerically discovered by Wu & Wu (1982) based on the generalized Boussinesq model for describing two-dimensional long waves generated by moving surface pressure or topography. In a joint theoretical and experimental study, Lee (1985) found a broad agreement between the experiment and two theoretical models, the generalized Boussinesq and the forced Korteweg de Vries (fKdV) equations, both containing forcing functions. The fKdV model is applied in the present study to explore the basic mechanism underlying the phenomenon. To facilitate the analysis of the stability of solutions of the initial-boundary-value problem of the fKdV equation, a family of forced steady solitary waves is found. Any such solution, if once established, will remain permanent in form in accordance with the uniqueness theorem shown here. One of the simplest of the stationary solutions, which is a one-parameter family and can be scaled into a universal similarity form, is chosen for stability calculations. As a test of the computer code, the initially established stationary solution is found to be numerically permanent in form with fractional uncertainties of less than 2% after the wave has traversed, under forcing, the distance of 600 water depths. The other numerical results show that when the wave is initially so disturbed as to have to rise from the rest state, which is taken as the initial value, the same phenomenon of the generation of upstream-advancing solitons is found to appear, with a definite time period of generation. The result for this similarity family shows that the period of generation, T[sub]S, and the scaled amplitude [alpha] of the solitons so generated are related by the formula T[sub]S = const [alpha]^-3/2. This relation is further found to be in good agreement with the first-principle prediction derived here based on mass, momentum and energy considerations of the fKdV equation

    Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins

    Get PDF
    This paper seeks to evaluate the swimming flow around a typical slender fish whose transverse cross-section to the rear of its maximum span section is of a lenticular shape with pointed edges, such as those of spiny fins, so that these side edges are sharp trailing edges, from which an oscillating vortex sheet is shed to trail the body in swimming. The additional feature of shedding of vortex sheet makes this problem a moderate generalization of the paper on the swimming of slender fish treated by Lighthill (1960a). It is found here that the thrust depends not only on the virtual mass of the tail-end section, but also on an integral effect of variations of the virtual mass along the entire body segment containing the trailing side edges, and that this latter effect can greatly enhance the thrust-making. The optimum shape problem considered here is to determine the transverse oscillatory movements a slender fish can make which will produce a prescribed thrust, so as to overcome the frictional drag, at the expense of the minimum work done in maintaining the motion. The solution is for the fish to send a wave down its body at a phase velocity c somewhat greater than the desired swimming speed U, with an amplitude nearly uniform from the maximum span section to the tail. Both the ratio U/c and the optimum efficiency are found to depend upon two parameters: the reduced wave frequency and a 'proportional-loading parameter', the latter being proportional to the thrust coefficient and to the inverse square of the wave amplitude. The basic mechanism of swimming is examined in the light of the principle of action and reaction by studying the vortex wake generated by the optimum movement

    Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems

    Get PDF
    The optimum shape problems considered in this part are for those profiles of a two-dimensional flexible plate in time-harmonic motion that will minimize the energy loss under the condition of fixed thrust and possibly also under other isoperimetric constraints. First, the optimum movement of a rigid plate is completely determined; it is necessary first to reduce the original singular quadratic form representing the energy loss to a regular one of a lower order, which is then tractable by usual variational methods. A favourable range of the reduced frequency is found in which the thrust contribution coming from the leading-edge suction is as small as possible under the prescribed conditions, outside of which this contribution becomes so large as to be hard to realize in practice without stalling. This optimum solution is compared with the recent theory of Lighthill (1970); these independently arrived-at conclusions are found to be virtually in agreement. The present theory is further applied t0 predict the movement of a porpoise tail of large aspect-ratio and is found in satisfactory agreement with the experimental measurements. A qualitative discussion of the wing movement in flapping flight of birds is also given on the basis of optimum efficiency. The optimum shape of a flexible plate is analysed for the most general case of infinite degrees of freedom. It is shown that the solution can be determined to a certain extent, but the exact shape is not always uniquely determinate

    Working Capital Requirement and the Unemployment Volatility Puzzle

    Full text link
    Shimer (2005) argues that a search and matching model of the labor market in which wage is determined by Nash bargaining cannot generate the observed volatility in unemployment and vacancy in response to reasonable labor productivity shocks. This paper examines how incorporating monopolistically competitive firms with a working capital requirement (in which firms borrow funds to pay their wage bills) improves the ability of the search models to match the empirical fluctuations in unemployment and vacancy without resorting to an alternative wage setting mechanism. The monetary authority follows an interest rate rule in the model. A positive labor productivity shock lowers the real marginal cost of production and lowers inflation. In response to the fall in price level, the monetary authority reduces the nominal interest rate. A lower interest rate reduces the cost of financing and partially offsets the increase in labor cost from a higher productivity. A reduced labor cost implies the firms retain a greater portion of the gain from a productivity shock, which gives them a greater incentive to create vacancies. Simulations show that a working capital requirement does indeed improve the ability of the search models to generate fluctuations in key labor market variables to better match the U.S. data

    Cavity and Wake Flows

    Get PDF
    The phenomenon of wake formation behind a body moving through a fluid, and the associated resistance of fluids, must have been one of the oldest experiences of man. From an analytical point of view, it is also one of the most difficult problems in fluid mechanics. Rayleigh, in his 1876 paper, observed that "there is no part of hydrodynamics more perplexing to the student than that which treats of the resistance of fluids." This insight of Rayleigh is so penetrating that the march of time has virtually left no mark on its validity even today, and likely still for some time to come. The first major step concerning the resistance of fluids was made over a century ago when Kirchhoff (1869) introduced an idealized inviscid-flow model with free streamlines (or surfaces of discontinuity) and employed (for steady, plane flows) the ingenious conformal-mapping technique that had been invented a short time earlier by Helmholtz (1868) for treating two-dimensional jets formed by free streamlines. This pioneering work offered an alternative to the classical paradox of D’Alembert (or the absence of resistance) and laid the foundation of the free-streamline theory. We appreciate the profound insight of these celebrated works even more when we consider that their basic idea about wakes and jets, based on a construction with surfaces of discontinuity, was formed decades before laminar and turbulent flows were distinguished by Reynolds (1883), and long before the fundamental concepts of boundary-layer theory and flow separation were established by Prandtl (1904a). However, there have been some questions raised in the past, and still today, about the validity of the Kirchhoff flow for the approximate calculation of resistance. Historically there is little doubt that in constructing the flow model Kirchhoff was thinking of the wake in a single-phase fluid, and not at all of the vapor-gas cavity in a liquid; hence the arguments, both for and against the Kirchhoff flow, should be viewed in this light. On this basis, an important observation was made by Sir William Thomson, later Lord Kelvin (see Rayleigh 1876) "that motions involving a surface of separation are unstable" (we infer that instability here includes the viscous effect). Regarding this comment Rayleigh asked "whether the calculations of resistance are materially affected by this circumstance as the pressures experienced must be nearly independent of what happens at some distance in the rear of the obstacle, where the instability would first begin to manifest itself." This discussion undoubtedly widened the original scope, brought the wake analysis closer to reality, and hence should influence the course of further developments. An expanded discussion essentially along these lines was given by Levi-Civita (1907) and was included in the survey by Goldstein (1969). Another point of fundamental importance is whether the Kirchhoff flow is the only correct Euler (or outer) limit of the Navier-Stokes solution to steady flow at high Reynolds numbers. If so, then a second difficulty arises, a consequence of the following argument: We know that the width of the Kirchhoff wake grows parabolically with the downstream distance x, at a rate independent of the (kinematic) viscosity u. If Prandtl’s boundary-layer theory is then applied to smooth out the discontinuity (i.e. the vortex sheet) between the wake and the potential flow, one obtains a laminar shear layer whose thickness grows like (ux/U)^-1/2 in a free stream of velocity U. Hence, for sufficiently small u/U the shear layers do not meet, so that the wake bubble remains infinitely long at a finite Reynolds number, a result not supported by experience. (For more details see Lagerstrom 1964, before p. 106, 131; Kaplun 1967, Part II.) The weaknesses in the above argument appear to lie in the two primary suppositions that, first, the free shear layer enveloping the wake would remain stable indefinitely, and second (perhaps a less serious one), the boundary-layer approximation would be valid along the infinitely long wake boundary. Reattachment of two turbulent shear layers, for instance, is possible since their thickness grows linearly with x. By and large, various criticisms, of the Kirchhoff flow model have led to constructive refinements of the free-streamline theory rather than to a weakening of the foundation of the theory as a valuable idealization. The major development in this direction has been based on the observation that the wake bubble is finite in size at high Reynolds numbers. (The wake bubble, or the near-wake, means, in the ordinary physical sense, the region of closed streamlines behind the body as characterized by a constant or nearly constant pressure.) To facilitate the mathematical analysis of flows with a finite wake bubble, a number of potential-flow models have been introduced to give the near-wake a definite configuration as an approximation to the inviscid outer flow. These theoretical models will be discussed explicitly later. It suffices to note here that all these models, even though artificial to various degrees, are aimed at admitting the near-wake pressure coefficient as a single free parameter of the flow, thus providing a satisfactory solution to the state of motion in the near part of the wake attached to the body. On the whole, their utility is established by their capability of bringing the results of potential theory of inviscid flows into better agreement with experimental measurements in fluids of small viscosity. The cavity flow also has a long, active history. Already in 1754, Euler, in connection with his study of turbines, realized that vapor cavitation may likely occur in a water stream at high speeds. In investigating the cause of the racing of a ship propeller, Reynolds (1873) observed the phenomenon of cavitation at the propeller blades. After the turn of this century, numerous investigations of cavitation and cavity flows were stimulated by studies of ship propellers, turbomachinery, hydrofoils, and other engineering developments. Important concepts in this subject began to appear about fifty years ago. In an extensive study of the cavitation of water turbines, Thoma (1926) introduced the cavitation number (the underpressure coefficient of the vapor phase) as the principal similarity parameter, which has ever since played a central role in small-bubble cavitation as well as in well-developed cavity flows. Applications of free-streamline theory to finite-cavity flows have attracted much mathematical interest and also provided valuable information for engineering purposes. Although the wake interpretation of the flow models used to be standard, experimental verifications generally indicate that the theoretical predictions by these finite-wake models are satisfactory to the same degree for both wake and cavity flows. This fact, however, has not been widely recognized and some confusion still exists. As a possible explanation, it is quite plausible that even for the wake in a single-phase flow, the kinetic energy of the viscous flow within the wake bubble is small, thus keeping the pressure almost unchanged throughout. Although this review gives more emphasis to cavity flows, several basic aspects of cavity and wake flows can be effectively discussed together since they are found to have many important features in common, or in close analogy. This is in spite of relatively minor differences that arise from new physical effects, such as gravity, surface tension, thermodynamics of phase transition, density ratio and viscosity ratio of the two phases, etc., that are intrinsic only to cavity flows. Based on this approach, attempts will be made to give a brief survey of the physical background, a general discussion of the free-streamline theory, some comments on the problems and issues of current interest, and to point out some basic problems yet to be resolved. In view of the vast scope of this subject and the voluminous literature, efforts will not be aimed at completeness, but rather on selective interests. Extensive review of the literature up to the 1960s may be found in recent expositions by Birkhoff & Zarantonello (1957), Gilbarg (1960), Gurevich (1961), Wehausen (1965), Sedov (1966), Wu (1968), Robertson & Wislicenus (1969), and (1961)
    • …
    corecore