4,916 research outputs found

    Design, fabrication and test of integrated micro-scale vibration based electromagnetic generator

    No full text
    This paper discusses the design, fabrication and testing of electromagnetic microgenerators. Three different designs of power generators are partially microfabricated and assembled. Prototype A having a wire-wound copper coil, Prototype B, an electrodeposited copper coil both on a Deep Reactive Ion etched (DRIE) silicon, beam and paddle. Prototype C uses moving NdFeB magnets in between two microfabricated coils. The integrated coil, paddle and beam were fabricated using standard micro-Electro-Mechanical Systems (MEMS) processing techniques. For Prototype A, the maximum measured power output was 148 nW at 8.08 kHz resonant frequency and 3.9 m/s2 acceleration. For prototype B, the microgenerator gave a maximum load power of 23 nW for an acceleration of 9.8 m/s2, at a resonant frequency of 9.83 kHz. This is a substantial improvement in power generated over other microfabricated silicon based generators reported in literature. This generator has a volume of 0.1 cm3 which is lowest of all the silicon based microfabricated electromagnetic power generators reported. To verify the potential of integrated coils in electromagnetic generators, Prototype C was assembled. This generated a maximum load power of 5

    Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    No full text
    This paper reviews possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, non-linear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This paper presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach

    Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator

    No full text
    Vibration-based micro-generators, as an alternative source of energy, have become increasingly significant in the last decade. This paper presents a new tunable electromagnetic vibration-based micro-generator. Frequency tuning is realized by applying an axial tensile force to the micro-generator. The dimensions of the generator, especially the dimensions of the coil and the air gap between magnets, have been optimized to maximize the output voltage and power of the micro-generator. The resonant frequency has been successfully tuned from 67.6 to 98 Hz when various axial tensile forces were applied to the structure. The generator produced a power of 61.6–156.6 µW over the tuning range when excited at vibrations of 0.59 ms-2. The tuning mechanism has little effect on the total damping. When the tuning force applied on the generator becomes larger than the generator’s inertial force, the total damping increases resulting in reduced output power. The resonant frequency increases less than indicated from simulation and approaches that of a straight tensioned cable when the force associated with the tension in the beam becomes much greater than the beam stiffness. The test results agree with the theoretical analysis presented

    Design of a Novel High Frequency Ultrasound Annular Array

    Get PDF
    AbstractThe design of a novel 50MHz 7-elment annular array is described. Equal-width electrodes are deposited on the rear face of piezoelectric layer to form a kerfless array, instead of mechanical cutting. Compared with equal-area designs, much better performance is achieved by the novel design. The cross talk is down to -20dB, the -6dB bandwidth and insertion loss are 41% and 18dB, respectively. The pulse responses are largely improved compared with conventional kerfless annular arrays. Furthermore, no pre-focus lens for the central element is required in this array, promising simplified fabrication

    An investigation of PDMS structures for optimized ferroelectret performance

    No full text
    This paper reports the ANSYS simulation and fabrication processes for optimising PDMS ferroelectret performance. The proposed model extends the previously published analytical models and compares this with simulation of individual void geometry. The ferroelectret material is fabricated from PDMS using 3D-printed plastic moulds. The analytical model and Ansys simulation results predict the variation in performance of the PDMS ferroelectret with the different void geometry and surface charge density. The theoretical maximum piezoelectric coefficient d33 achieved was about 220 pC/N. The experimental maximum d33 obtained was 172 pC/N

    Kinetic energy harvesting

    No full text
    This paper reviews kinetic energy harvesting as a potential localised power supply for wireless applications. Harvesting devices are typically implemented as resonant devices of which the power output depends upon the size of the inertial mass, the frequency and amplitude of the driving vibrations, the maximum available mass displacement and the damping. Three transduction mechanisms are currently primarily employed to convert mechanical into electrical energy: electromagnetic, piezoelectric and electrostatic. Piezoelectric and electrostatic mechanisms are best suited to small size MEMS implementations, but the power output from such devices is at present limited to a few microwatts. An electromagnetic generator implemented with discrete components has produced a power 120 ?W with the highest recorded efficiency to date of 51% for a device of this size reported to date. The packaged device is 0.8 cm3 and weighs 1.6 grams. The suitability of the technology in space applications will be determined by the nature of the available kinetic energy and the required level of output power. A radioactively coupled device may present an opportunity where suitable vibrations do not exist

    Novel thick-foam ferroelectret with engineered voids for energy harvesting applications

    Get PDF
    This work reports a novel thick-foam ferroelectret which is designed and engineered for energy harvesting applications. We fabricated this ferroelectret foam by mixing a chemical blowing agent with a polymer solution, then used heat treatment to activate the agent and create voids in the polymer foam. The dimensions of the foam, the density and size of voids can be well controlled in the fabrication process. Therefore, this ferroelectret can be engineered into optimized structure for energy harvesting applications
    corecore