5,270 research outputs found

    On Deletion in Delaunay Triangulation

    Get PDF
    This paper presents how the space of spheres and shelling may be used to delete a point from a dd-dimensional triangulation efficiently. In dimension two, if k is the degree of the deleted vertex, the complexity is O(k log k), but we notice that this number only applies to low cost operations, while time consuming computations are only done a linear number of times. This algorithm may be viewed as a variation of Heller's algorithm, which is popular in the geographic information system community. Unfortunately, Heller algorithm is false, as explained in this paper.Comment: 15 pages 5 figures. in Proc. 15th Annu. ACM Sympos. Comput. Geom., 181--188, 199

    The problem of the turbo-compressor

    Get PDF
    In terminating the study of the adaptation of the engine to the airplane, we will examine the problem of the turbo-compressor,the first realization of which dates from the war; this will form an addition to the indications already given on supercharging at various altitudes. This subject is of great importance for the application of the turbo-compressor worked by the exhaust gases. As a matter of fact, a compressor increasing the pressure in the admission manifold may be controlled by the engine shaft by means of multiplication gear or by a turbine operated by the exhaust gas. Assuming that the increase of pressure in the admission manifold is the same in both cases, the pressure in the exhaust manifold would be greater in the case in which the compressor is worked by the exhaust gas and there would result a certain reduction of engine power which we must be able to calculate. On the other hand , if the compressor is controlled by the engine shaft, a certain fraction of the excess power supplied is utilized for the rotation of the compressor. In order to compare the two systems, it is there-fore necessary to determine the value of the reduction of power due to back pressure when the turbine is employed

    Inner and Outer Rounding of Boolean Operations on Lattice Polygonal Regions

    Get PDF
    Robustness problems due to the substitution of the exact computation on real numbers by the rounded floating point arithmetic are often an obstacle to obtain practical implementation of geometric algorithms. If the adoption of the --exact computation paradigm--[Yap et Dube] gives a satisfactory solution to this kind of problems for purely combinatorial algorithms, this solution does not allow to solve in practice the case of algorithms that cascade the construction of new geometric objects. In this report, we consider the problem of rounding the intersection of two polygonal regions onto the integer lattice with inclusion properties. Namely, given two polygonal regions A and B having their vertices on the integer lattice, the inner and outer rounding modes construct two polygonal regions with integer vertices which respectively is included and contains the true intersection. We also prove interesting results on the Hausdorff distance, the size and the convexity of these polygonal regions

    Two-hop Communication with Energy Harvesting

    Full text link
    Communication nodes with the ability to harvest energy from the environment have the potential to operate beyond the timeframe limited by the finite capacity of their batteries; and accordingly, to extend the overall network lifetime. However, the optimization of the communication system in the presence of energy harvesting devices requires a new paradigm in terms of power allocation since the energy becomes available over time. In this paper, we consider the problem of two-hop relaying in the presence of energy harvesting nodes. We identify the optimal offline transmission scheme for energy harvesting source and relay when the relay operates in the full-duplex mode. In the case of a half-duplex relay, we provide the optimal transmission scheme when the source has a single energy packet.Comment: 4 pages, 3 figures. To be presented at the 4th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Dec. 201

    Finding an ordinary conic and an ordinary hyperplane

    Get PDF
    Given a finite set of non-collinear points in the plane, there exists a line that passes through exactly two points. Such a line is called an ordinary line. An efficient algorithm for computing such a line was proposed by Mukhopadhyay et al. In this note we extend this result in two directions. We first show how to use this algorithm to compute an ordinary conic, that is, a conic passing through exactly five points, assuming that all the points do not lie on the same conic. Both our proofs of existence and the consequent algorithms are simpler than previous ones. We next show how to compute an ordinary hyperplane in three and higher dimensions.Comment: 7 pages, 2 figure

    Improved Incremental Randomized Delaunay Triangulation

    Get PDF
    We propose a new data structure to compute the Delaunay triangulation of a set of points in the plane. It combines good worst case complexity, fast behavior on real data, and small memory occupation. The location structure is organized into several levels. The lowest level just consists of the triangulation, then each level contains the triangulation of a small sample of the levels below. Point location is done by marching in a triangulation to determine the nearest neighbor of the query at that level, then the march restarts from that neighbor at the level below. Using a small sample (3%) allows a small memory occupation; the march and the use of the nearest neighbor to change levels quickly locate the query.Comment: 19 pages, 7 figures Proc. 14th Annu. ACM Sympos. Comput. Geom., 106--115, 199

    Pairwise transitive 2-designs

    Full text link
    We classify the pairwise transitive 2-designs, that is, 2-designs such that a group of automorphisms is transitive on the following five sets of ordered pairs: point-pairs, incident point-block pairs, non-incident point-block pairs, intersecting block-pairs and non-intersecting block-pairs. These 2-designs fall into two classes: the symmetric ones and the quasisymmetric ones. The symmetric examples include the symmetric designs from projective geometry, the 11-point biplane, the Higman-Sims design, and designs of points and quadratic forms on symplectic spaces. The quasisymmetric examples arise from affine geometry and the point-line geometry of projective spaces, as well as several sporadic examples.Comment: 28 pages, updated after review proces
    • …
    corecore