1,347 research outputs found

    Transport Properties and Density of States of Quantum Wires with Off-diagonal Disorder

    Full text link
    We review recent work on the random hopping problem in a quasi-one-dimensional geometry of N coupled chains (quantum wire with off-diagonal disorder). Both density of states and conductance show a remarkable dependence on the parity of N. The theory is compared to numerical simulations.Comment: 8 pages, to appear in Physica E (special issue on Dynamics of Complex Systems); 6 figure

    Nonuniversality in quantum wires with off-diagonal disorder: a geometric point of view

    Full text link
    It is shown that, in the scaling regime, transport properties of quantum wires with off-diagonal disorder are described by a family of scaling equations that depend on two parameters: the mean free path and an additional continuous parameter. The existing scaling equation for quantum wires with off-diagonal disorder [Brouwer et al., Phys. Rev. Lett. 81, 862 (1998)] is a special point in this family. Both parameters depend on the details of the microscopic model. Since there are two parameters involved, instead of only one, localization in a wire with off-diagonal disorder is not universal. We take a geometric point of view and show that this nonuniversality follows from the fact that the group of transfer matrices is not semi-simple. Our results are illustrated with numerical simulations for a tight-binding model with random hopping amplitudes.Comment: 12 pages, RevTeX; 3 figures included with eps

    Electron fractionalization in two-dimensional graphenelike structures

    Full text link
    Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero-modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics.Comment: 4 pages, 2 figure

    Spin-directed network model for the surface states of weak three-dimensional Z2 \mathbb{Z}^{\,}_{2} topological insulators

    Get PDF
    A two-dimensional spin-directed Z2 \mathbb{Z}^{\,}_{2} network model is constructed that describes the combined effects of dimerization and disorder for the surface states of a weak three-dimensional Z2 \mathbb{Z}^{\,}_{2} topological insulator. The network model consists of helical edge states of two-dimensional layers of Z2 \mathbb{Z}^{\,}_{2} topological insulators which are coupled by time-reversal symmetric interlayer tunneling. It is argued that, without dimerization of interlayer couplings, the network model has no insulating phase for any disorder strength. However, a sufficiently strong dimerization induces a transition from a metallic phase to an insulating phase. The critical exponent ν\nu for the diverging localization length at metal-insulator transition points is obtained by finite-size scaling analysis of numerical data from simulations of this network model. It is shown that the phase transition belongs to the two-dimensional symplectic universality class of Anderson transition.Comment: 36 pages and 27 figures, plus Supplemental Materia
    • …
    corecore