1,551 research outputs found

    Stable transport in proton driven Fast Ignition

    Full text link
    Proton beam transport in the context of proton driven Fast Ignition is usually assumed to be stable due to protons high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven Fast Ignition parameters. In the cold regime, two fast growing Buneman-like modes are found, with an inverse growth-rate much smaller than the beam time-of-flight to the target core. The stability issue is thus not so obvious, and Kinetic effects are investigated. One unstable mode is found stabilized by the background plasma protons and electrons temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than ∼\sim 10 keV. In Fusion conditions, the beam propagation should therefore be stable.Comment: Submitted to Po

    Classical Strongly Coupled QGP: VII. Energy Loss

    Full text link
    We use linear response analysis and the fluctuation-dissipation theorem to derive the energy loss of a heavy quark in the SU(2) classical Coulomb plasma in terms of the l=1l=1 monopole and non-static structure factor. The result is valid for all Coulomb couplings Γ=V/K\Gamma=V/K, the ratio of the mean potential to kinetic energy. We use the Liouville equation in the collisionless limit to assess the SU(2) non-static structure factor. We find the energy loss to be strongly dependent on Γ\Gamma. In the liquid phase with Γ≈4\Gamma\approx 4, the energy loss is mostly metallic and soundless with neither a Cerenkov nor a Mach cone. Our analytical results compare favorably with the SU(2) molecular dynamics simulations at large momentum and for heavy quark masses.Comment: 18 pages, 15 figures. v2: added references, changed title, replaced figures for Fig. 7, corrected typo

    Spin-density functional approach to thermodynamic and structural consistence in the charge and spin response of an electron gas

    Full text link
    We use spin-density functional theory to obtain novel expressions for the charge and spin local-field factors of an electron gas in terms of its electron-pair structure factors. These expressions (i) satisfy the compressibility and spin susceptibility sum rules; (ii) keep account of kinetic correlations by means of an integration over the coupling strength; and (iii) provide a practical self-consistent scheme for evaluating linear response and liquid structure. Numerical illustrations are given for the dielectric response of the paramagnetic electron gas in both three and two dimensions.Comment: 9 pages, 3 figures, submitted to Solid State Commu

    Classical Strongly Coupled QGP: VII. Shear Viscosity and Self Diffusion

    Full text link
    We construct the Liouville operator for the SU(2) classical colored Coulomb plasma (cQGP) for arbitrary values of the Coulomb coupling Γ=V/K\Gamma=V/K, the ratio of the mean Coulomb to kinetic energy. We show that its resolvent in the classical colored phase space obeys a hierarchy of equations. We use a free streaming approximation to close the hierarchy and derive an integral equation for the time-dependent structure factor. Its reduction by projection yields hydrodynamical equations in the long-wavelength limit. We discuss the character of the hydrodynamical modes at strong coupling. The shear viscosity is shown to exhibit a minimum at Γ≈8\Gamma\approx 8 near the liquid point. This minimum follows from the cross-over between the single particle collisional regime which drops as 1/Γ5/21/\Gamma^{5/2} and the hydrodynamical collisional regime which rises as Γ1/2\Gamma^{1/2}. The self-diffusion constant drops as 1/Γ3/21/\Gamma^{3/2} irrespective of the regime. We compare our results to molecular dynamics simulations of the SU(2) colored Coulomb plasma. We also discuss the relevance of our results for the quantum and strongly coupled quark gluon plasma (sQGP)Comment: 36 pages, 14 figure

    Nonextensive statistics in stellar plasma and solar neutrinos

    Get PDF
    Nonextensive and quantum uncertainty effects (related to the quasiparticles composing the stellar core) have strong influence on the nuclear rates and, of course, affect solar neutrino fluxes. Both effects do coexist and are due to the frequent collisions among the ions. The weakly nonextensive nature of the solar core is confirmed. The range of predictions for the neutrino fluxes is enlarged and the solar neutrino problem becomes less dramatic.Comment: 4 pages. Proc. of TAUP99, Sept. 6-10 1999, Paris. To appear in Nucl. Phys. B, Proc. Supp

    Relaxation of the distribution function tails for systems described by Fokker-Planck equations

    Full text link
    We study the formation and the evolution of velocity distribution tails for systems with long-range interactions. In the thermal bath approximation, the evolution of the distribution function of a test particle is governed by a Fokker-Planck equation where the diffusion coefficient depends on the velocity. We extend the theory of Potapenko et al. [Phys. Rev. E, {\bf 56}, 7159 (1997)] developed for power law potentials to the case of an arbitrary potential of interaction. We study how the structure and the progression of the front depend on the behavior of the diffusion coefficient for large velocities. Particular emphasis is given to the case where the velocity dependence of the diffusion coefficient is Gaussian. This situation arises in Fokker-Planck equations associated with one dimensional systems with long-range interactions such as the Hamiltonian Mean Field (HMF) model and in the kinetic theory of two-dimensional point vortices in hydrodynamics. We show that the progression of the front is extremely slow (logarithmic) in that case so that the convergence towards the equilibrium state is peculiar

    Deuterium burning in Jupiter interior

    Get PDF
    We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deuterium reaction rates enough to contribute to the heating of Jupiter. These deviations are compatible with the violation of extensivity expected from temperature and density conditions inside Jupiter.Comment: 6 pages, use elsart + 1 encaspulated postscript figure. Submitted to Physica
    • …
    corecore