2,990 research outputs found

    Random-Manifold to Random-Periodic Depinning of an Elastic Interface

    Full text link
    We study numerically the depinning transition of driven elastic interfaces in a random-periodic medium with localized periodic-correlation peaks in the direction of motion. The analysis of the moving interface geometry reveals the existence of several characteristic lengths separating different length-scale regimes of roughness. We determine the scaling behavior of these lengths as a function of the velocity, temperature, driving force, and transverse periodicity. A dynamical roughness diagram is thus obtained which contains, at small length scales, the critical and fast-flow regimes typical of the random-manifold (or domain wall) depinning, and at large length-scales, the critical and fast-flow regimes typical of the random-periodic (or charge-density wave) depinning. From the study of the equilibrium geometry we are also able to infer the roughness diagram in the creep regime, extending the depinning roughness diagram below threshold. Our results are relevant for understanding the geometry at depinning of arrays of elastically coupled thin manifolds in a disordered medium such as driven particle chains or vortex-line planar arrays. They also allow to properly control the effect of transverse periodic boundary conditions in large-scale simulations of driven disordered interfaces.Comment: 19 pages, 10 figure

    Thermal rounding exponent of the depinning transition of an elastic string in a random medium

    Get PDF
    We study numerically thermal effects at the depinning transition of an elastic string driven in a two-dimensional uncorrelated disorder potential. The velocity of the string exactly at the sample critical force is shown to behave as V∼TψV \sim T^\psi, with ψ\psi the thermal rounding exponent. We show that the computed value of the thermal rounding exponent, ψ=0.15\psi = 0.15, is robust and accounts for the different scaling properties of several observables both in the steady-state and in the transient relaxation to the steady-state. In particular, we show the compatibility of the thermal rounding exponent with the scaling properties of the steady-state structure factor, the universal short-time dynamics of the transient velocity at the sample critical force, and the velocity scaling function describing the joint dependence of the steady-state velocity on the external drive and temperature

    Bragg- and Moving-glasses: a theory of disordered vortex lattices

    Full text link
    We study periodic lattices, such as vortex lattices in type II superconductors in a random pinning potential. For the static case we review the prediction that the phase diagram of such systems consists of a topologically ordered Bragg glass phase, with quasi long range translational order, at low fields. This Bragg glass phase undergoes a transition at higher fields into another glassy phase, with dislocations, or a liquid. This proposition is compatible with a large number of experimental results on BSCCO or Thalium compounds. Further experimental consequences of our results and relevance to other systems will be discussed. When such vortex systems are driven by an external force, we show that, due to periodicity in the direction transverse to motion, the effects of static disorder persist even at large velocity. In d=3d=3, at weak disorder, or large velocity the lattice forms a topologically ordered glass state, the ``moving Bragg glass'', an anisotropic version of the static Bragg glass. The lattice flows through well-defined, elastically coupled, static channels. We determine the roughness of the manifold of channels and the positional correlation functions. The channel structure also provides a natural starting point to study the influence of topological defects such as dislocations. In d=2d=2 or at strong disorder the channels can decouple along the direction of motion leading to a ``smectic'' like flow. We also show that such a structure exhibits an effective transverse critical pinning force due to barriers to transverse motion, and discuss the experimental consequences of this effect.Comment: Proceedings of M2S-HTSC-V conference (Beijing, Feb 97) to be published in Physica C; 4 pages, 3 figures, uses espcrc2.st

    Some experimental tests of Tomonaga-Luttinger liquids

    Full text link
    The Tomonaga-Luttinger-Liquid (TLL) has been the cornerstone of our understanding of the properties of one dimensional systems. This universal set of properties plays in one dimension, the same role than Fermi liquid plays for the higher dimensional metals. I will give in these notes an overview of some of the experimental tests that were made to probe such TLL physics. In particular I will detail some of the recent experiments that were made in spin systems and which provided remarkable quantitative tests of the TLL physics.Comment: Part of the special issue on "Luttinger liquids", Vieri Mastropietro e

    Luttinger liquid theory of purple bronze Li0.9Mo6O17Li_{0.9}Mo_6O_{17} in the charge regime

    Full text link
    Molybdenum purple bronze Li0.9_{0.9}Mo6_{6}O17_{17} is an exceptional material known to exhibit one dimensional (1D) properties for energies down to a few meV. This fact seems to be well established both in experiments and in band structure theory. We use the unusual, very 1-dimensional band dispersion obtained in \emph{ab-initio} DFT-LMTO band calculations as our starting point to study the physics emerging below 300meV. A dispersion perpendicular to the main dispersive direction is obtained and investigated in detail. Based on this, we derive an effective low energy theory within the Tomonaga Luttinger liquid (TLL) framework. We estimate the strength of the possible interactions and from this deduce the values of the TLL parameters for charge modes. Finally we investigate possible instabilities of TLL by deriving renormalization group (RG) equations which allow us to predict the size of potential gaps in the spectrum. While 2kF2k_F instabilities strongly suppress each other, the 4kF4k_F instabilities cooperate, which paves the way for a possible CDW at the lowest energies. The aim of this work is to understand the experimental findings, in particular the ones which are certainly lying within the 1D regime. We discuss the validity of our 1D approach and further perspectives for the lower energy phases.Comment: We wish to acknowledge financial support of MaNEP, SectionI

    Mode coupling induced dissipative and thermal effects at long times after a quantum quench

    Full text link
    An interaction quench in a Luttinger liquid can drive it into an athermal steady state. We analyze the effects on such an out of equilibrium state of a mode coupling term due to a periodic potential. Employing a perturbative renormalization group approach we show that even when the periodic potential is an irrelevant perturbation in equilibrium, it has important consequences on the athermal steady state as it generates a temperature as well as a dissipation and hence a finite life-time for the bosonic modes.Comment: 4+ pages and 2 figure

    Spectroscopy for cold atom gases in periodically phase-modulated optical lattices

    Full text link
    The response of cold atom gases to small periodic phase modulation of an optical lattice is discussed. For bosonic gases, the energy absorption rate is given, within linear response theory, by imaginary part of the current correlation function. For fermionic gases in a strong lattice potential, the same correlation function can be probed via the production rate double occupancy. The phase modulation gives thus direct access to the conductivity of the system, as function of the modulation frequency. We give an example of application in the case of one dimensional bosons at zero temperature and discuss the link between the phase- and amplitude-modulation.Comment: 4 pages, 2 figures, final versio

    Doping dependence of the vortex-core energy in bilayer films of cuprates

    Full text link
    The energy needed to create a vortex core is the basic ingredient to address the physics of thermal vortex fluctuations in underdoped cuprates. Here we theoretically investigate its role on the occurrence of the Beresinskii-Kosterlitz-Thouless transition in a bilayer film with inhomogeneity. From the comparison with recent measurements of the penetration depth in two-unit cell thin films of Y1−x_{1-x}Cax_{x}Ba2_{2}Cu3_{3}O_{7-\d} (YBCO) by Hetel et al. [Nat. Phys. 3, 700 (2007)] we can extract the value of the vortex-core energy μ\mu, and show that μ\mu scales linearly with TcT_c at low doping.Comment: 4pages, 3 figures. References added, final versio

    Mott transition in one dimension

    Full text link
    I review some of the results on the Mott transition in one dimensional systems. In particular I discuss the phase diagram and critical properties of both Mott transitions at fixed filling and upon doping, as well as the dc and ac conductivity. Application of these results to organic conductors is discussed.Comment: Proceedings of the SCES96 conference (August 96), 6 pages, 6 figures, uses epsfi
    • …
    corecore