3,416 research outputs found

    Equation of state for neutron star matter with NJL model and Dirac-Brueckner-Hartree-Fock approximation

    Full text link
    As the interior density of a neutron star can become very high, it has been expected and discussed that quark matter may exist inside it. To describe the transition from hadron to quark phases (and vice versa), there are mainly two methods; one is the first-order phase transition, and the other is the crossover phenomenon. In the present study, using the flavor-SU (3) NJL model with the vector coupling interaction, we have calculated the equation of state for the quark phase at high density. Furthermore, for the hadron phase at low density, we have used two kinds of the equations of state; one is a relatively soft one by the QHD model, and the other is a stiff one calculated with relativistic Brueckner-Hartree-Fock approximation. Using those equations of state for the two phases, we have investigated the influence of various choices of parameters concerning the crossover region on the mass and radius of a neutron star.Comment: 3 pages, 2 figures, conference proceedings: NIC Symposium, 19-24 June 2016, Niigata, Japa

    Crosstalk Between Brain-Derived Neurotrophic Factor And N-Methyl-D-Aspartate Receptor Signaling In Neurons

    Get PDF
    Glutamate is the major excitatory neurotransmitter in brain exerting prosurvival effect on neurons via N-methyl-D-aspartate receptor (NMDAR) signaling under physiological conditions. However in pathological circumstances such as ischemia, NMDARs might have proapoptotic excitotoxic activity. In contrast brain-derived neurotrophic factor (BDNF) signaling via TrkB receptors has been largely considered to promote neuronal differentiation, plasticity and survival during normal development, and protect neurons in pathophysiological conditions antagonizing the NMDAR-mediated excitotoxic cell death. In this review we summarize recent evidence for the existent crosstalk and positive feedback loops between the BDNF and NMDAR signaling and point out some of the important specific features of each signaling pathway

    Oscillations in the G-type Giants

    Full text link
    The precise radial-velocity measurements of 4 G-type giants, 11Com, ζ\zeta Hya, ϵ\epsilon Tau, and η\eta Her were carried out. The short-term variations with amplitudes, 1-7m/s and periods, 3-10 hours were detected. A period analysis shows that the individual power distribution is in a Gaussian shape and their peak frequencies (νmax\nu_{max}) are in a good agreement with the prediction by the scaling law. With using a pre-whitening procedure, significant frequency peaks more than 3 σ\sigma are extracted for these giants. From these peaks, we determined the large frequency separation by constructing highest peak distribution of collapsed power spectrum, which is also in good agreement with what the scaling law for the large separation predicts. Echelle diagrams of oscillation frequency were created based on the extracted large separations, which is very useful to clarify the properties of oscillation modes. In these echelle diagrams, odd-even mode sequences are clearly seen. Therefore, it is certain that in these G-type giants, non-radial modes are detected in addition to radial mode. As a consequence, these properties of oscillation modes are shown to follow what Dzymbowski et al.(2001) and Dupret et al.(2009) theoretically predicted. Damping times for these giants were estimated with the same method as that developed by Stello et al.(2004). The relation of Q value (ratio of damping time to period) to the period was discussed by adding the data of the other stars ranging from dwarfs to giants.Comment: 28 pages, 16 figures, accepted for publication in PASJ 62, No.4, 201

    PRICES AND INJUSTICE IN TAXATION

    Get PDF

    THE PURPOSES AND SUBSTANCE OF TAXATION

    Get PDF

    STATE OFFICIALS AND TAXATION

    Get PDF
    corecore