375 research outputs found

    Fractal Electromagnetic Showers

    Get PDF
    We study the self-similar structure of electromagnetic showers and introduce the notion of the fractal dimension of a shower. Studies underway of showers in various materials and at various energies are presented, and the range over which the fractal scaling behaviour is observed is discussed. Applications to fast shower simulations and identification, particularly in the context of extensive air showers, are also discussed.Comment: Talk to be presented at the XI International Symposium on Very High Energy Cosmic Ray Interaction

    Using {\sc top-c} for Commodity Parallel Computing in Cosmic Ray Physics Simulations

    Get PDF
    {\sc top-c} (Task Oriented Parallel C) is a freely available package for parallel computing. It is designed to be easy to learn and to have good tolerance for the high latencies that are common in commodity networks of computers. It has been successfully used in a wide range of examples, providing linear speedup with the number of computers. A brief overview of {\sc top-c} is provided, along with recent experience with cosmic ray physics simulations.Comment: Talk to be presented at the XI International Symposium on Very High Energy Cosmic Ray Interaction

    On the nature of cosmic rays above the Greisen--Zatsepin--Kuz'min cut off

    Get PDF
    A re-examination of the atmospheric cascade profile of the highest energy cosmic ray is presented. The study includes air-shower simulations considering different cross sections, particle multiplicity and variation of the hadronic-event-generator to model interactions above 200 GeV. The analysis provides evidence that a medium mass nucleus primary reproduces the shower profile quite well. This result does not support the idea, increasingly popular at present, that the highest energy particles are protons, derived from the decay of supermassive relic particles. On the other hand, we show that debris of relativistic super-heavy nuclei, which can survive a 100 Mpc journey through the primeval radiation are likely to generate such a kind of cascade.Comment: Revised version, improvements per referee's suggestions. To be published in Phys. Lett.

    Multi-wavelength laser based on an arrayed waveguide grating and Sagnac loop reflectors monolithically integrated on InP

    Get PDF
    In this paper, a multi-wavelength laser monolithically integrated on InP is presented. A linear laser cavity is built between two integrated Sagnac loop reflectors, with an Arrayed Waveguide Grating (AWG) as frequency selective device, and Semiconductor Optical Amplifiers (SOA) as gain sections. The power is out coupled from the cavity using a side diffraction order of the AWG. Simultaneous laser operation is provided for four wavelengths/cavities in the device. The termination of the laser cavities with integrated Sagnac loop reflectors avoids using high reflection coating. Only anti-reflection coating is used in the output facet of the chip

    InP monolithically integrated label swapper device for spectral amplitude coded optical packet networks

    Get PDF
    In this paper a label swapping device, for spectral amplitude coded optical packet networks, fully integrated using InP technology is presented. Compared to previous demonstrations using discrete component assembly, the device footprint is reduced by a factor of 105 and the operation speed is increased by a factor of 103. This is, to the best of our knowledge, the first demonstration of a totally integrated label swapping device

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
    corecore