8,223 research outputs found

    Effective Range Corrections to Three-Body Recombination for Atoms with Large Scattering Length

    Full text link
    Few-body systems with large scattering length a have universal properties that do not depend on the details of their interactions at short distances. The rate constant for three-body recombination of bosonic atoms of mass m into a shallow dimer scales as \hbar a^4/m times a log-periodic function of the scattering length. We calculate the leading and subleading corrections to the rate constant which are due to the effective range of the atoms and study the correlation between the rate constant and the atom-dimer scattering length. Our results are applied to 4He atoms as a test case.Comment: 6 pages, 2 figures, improved discussion, final versio

    Efimov physics from a renormalization group perspective

    Full text link
    We discuss the physics of the Efimov effect from a renormalization group viewpoint using the concept of limit cycles. Furthermore, we discuss recent experiments providing evidence for the Efimov effect in ultracold gases and its relevance for nuclear systems.Comment: 22 pages, 4 figures (invited review submitted to Phil. Trans. Roy. Soc. A

    Few-particle Green's functions for strongly correlated systems on infinite lattices

    Full text link
    We show how few-particle Green's functions can be calculated efficiently for models with nearest-neighbor hopping, for infinite lattices in any dimension. As an example, for one dimensional spinless fermions with both nearest-neighbor and second nearest-neighbor interactions, we investigate the ground states for up to 5 fermions. This allows us not only to find the stability region of various bound complexes, but also to infer the phase diagram at small but finite concentrations.Comment: 4 pages with 4 figures + 7 pages with 2 figures of suppl. materia

    Ultracold three-body collisions near overlapping Feshbach resonances

    Full text link
    We present a comprehensive collection of ultracold three-body collisions properties near overlapping Feshbach resonances. Our results incorporate variations of all scattering lengths and demonstrate novel collisional behavior, such as atom-molecule interference effects. Taking advantage of the unique ways in which these collisions reflect Efimov physics, new pathways to control atomic and molecular losses open up. Further, we show that overlapping resonances can greatly improve the chances of observing multiple Efimov features in an ultracold quantum gas for nearly any system.Comment: 4 pages, 3 figures, 1 tabl

    Technological prerequisites for indistinguishability of a person and his/her computer replica

    Get PDF
    Some people wrongly believe that A. Turing’s works that underlie all modern computer science never discussed “physical” robots. This is not so, since Turing did speak about such machines, though making a reservation that this discussion was still premature. In particular, in his 1948 report [8], he suggested that a physical intelligent machine equipped with motors, cameras and loudspeakers, when wandering through the fields of England, would present “the danger to the ordinary citizen would be serious.” [8, ]. Due to this imperfection of technology in the field of knowledge that we now call robotics, the methodology that he proposed was based on human speech, or rather on text. Other natural human skills were too difficult to implement, while the exchange of cues via written messages was much more accessible for engineering implementation in Turing’s time. Nevertheless, since then, the progress of computer technology has taken forms that the founder of artificial intelligence could not have foreseen

    Condensates of Strongly-interacting Atoms and Dynamically Generated Dimers

    Full text link
    In a system of atoms with large positive scattering length, weakly-bound diatomic molecules (dimers) are generated dynamically by the strong interactions between the atoms. If the atoms are modeled by a quantum field theory with an atom field only, condensates of dimers cannot be described by the mean-field approximation because there is no field associated with the dimers. We develop a method for describing dimer condensates in such a model based on the one-particle-irreducible (1PI) effective action. We construct an equivalent 1PI effective action that depends not only on the classical atom field but also on a classical dimer field. The method is illustrated by applying it to the many-body behavior of bosonic atoms with large scattering length at zero temperature using an approximation in which the 2-atom amplitude is treated exactly but irreducible NN-atom amplitudes for N≥3N \ge 3 are neglected. The two 1PI effective actions give identical results for the atom superfluid phase, but the one with a classical dimer field is much more convenient for describing the dimer superfluid phase. The results are also compared with previous work on the Bose gas near a Feshbach resonance.Comment: 10 figure

    Resonant Dimer Relaxation in Cold Atoms with a Large Scattering Length

    Full text link
    Efimov physics refers to universal phenomena associated with a discrete scaling symmetry in the 3-body problem with a large scattering length. The first experimental evidence for Efimov physics was the recent observation of a resonant peak in the 3-body recombination rate for 133Cs atoms with large negative scattering length. There can also be resonant peaks in the atom-dimer relaxation rate for large positive scattering length. We calculate the atom-dimer relaxation rate as a function of temperature and show how measurements of the relaxation rate can be used to determine accurately the parameters that govern Efimov physics.Comment: 4 pages, 2 eps figures, normalization error in figures corrected, equations unchange

    Linear correlations between 4He trimer and tetramer energies calculated with various realistic 4He potentials

    Full text link
    In a previous work [Phys. Rev. A 85, 022502 (2012)] we calculated, with the use of our Gaussian expansion method for few-body systems, the energy levels and spatial structure of the 4He trimer and tetramer ground and excited states using the LM2M2 potential, which has a very strong short-range repulsion. In this work, we calculate the same quantities using the presently most accurate 4He-4He potential [M. Przybytek et al., Phys. Rev. Lett. 104, 183003 (2010)] that includes the adiabatic, relativistic, QED and residual retardation corrections. Contributions of the corrections to the tetramer ground-(excited-)state energy, -573.90 (-132.70) mK, are found to be, respectively, -4.13 (-1.52) mK, +9.37 (+3.48) mK, -1.20 (-0.46) mK and +0.16 (+0.07) mK. Further including other realistic 4He potentials, we calculated the binding energies of the trimer and tetramer ground and excited states, B_3^(0), B_3^(1), B_4^(0) and B_4^(1), respectively. We found that the four kinds of the energies for the different potentials exhibit perfect linear correlations between any two of them over the range of binding energies relevant for 4He atoms (namely, six types of the generalized Tjon lines are given). The dimerlike-pair model for 4He clusters, proposed in the previous work, predicts a simple universal relation B_4^(1)/B_2 =B_3^(0)/B_2 + 2/3, which precisely explains the correlation between the tetramer excited-state energy and the trimer ground-state energy, with B_2 being the dimer binding energy.Comment: 10 pages, 3 figures, published version in Phys. Rev. A85, 062505 (2012), Figs. 2, 5, and 6 added, minor changes in the description of the dimerlike-pair mode
    • …
    corecore