6 research outputs found

    The effects of oxygen and reactive oxygen species on antibiotic resistance and microbial communities in chronic wounds

    Get PDF
    Infection is one of the factors that may contribute to non-healing of chronic wounds; the presence of antibiotic resistant bacteria serves to exacerbate the problem due to limited treatment options. Bacteria utilise several mechanisms to survive exposure to antibiotics, including synthesis of deactivating enzymes, target modification or substitution, changes to membrane permeability, upregulation of efflux pumps and the formation of a biofilm. Quorum sensing is a density-dependent mechanism of bacterial cell to cell communication that can be instrumental in co-ordinating biofilm initiation. Hyperbaric oxygen therapy (HBOT) is an option offered to some patients with chronic wounds, including diabetic foot ulcers. Evidence suggests that HBOT can reduce the incidence of major amputation in these patients. As well as the direct toxicity of increased tissue oxygenation on anaerobic bacteria HBOT may also increase levels of reactive oxygen and nitrogen species in the wound environment. This study aimed to investigate the effects of hyperoxia and oxidative damage on three specific mechanisms of antibiotic resistance: the activity of penicillinase, an antibiotic deactivating enzyme synthesised by bacteria; the activity of quorum sensing signalling molecules (AHLs); and biofilms and their associated bacteria. It also analysed the population dynamics of, primarily, bacteria in diabetic foot ulcers during HBOT, by the use of molecular analysis tools such as PCRDGGE. The presence of fungal species was investigated in wounds prior to HBOT and in two wounds at two points during HBOT. This study found that hydrogen peroxide, hypochlorous acid and peroxynitrite reduced the activity of penicillinase in vitro. Hypochlorous acid reduced the activity of a range of AHLs in vitro but not in vivo. Oxygen concentration did not have any impact on biofilm mass, nor did it significantly affect the ability of an oxidant-generating enzyme to reduce live bacterial cells within a biofilm. The population dynamics of bacterial species identified in all the wounds were complex and did not undergo identifiable changes during HBOT. Fungal species were identified in all wounds prior to HBOT, though different profiles were observed in the two wounds investigated during HBOT. These results suggest that oxidants could play a role in the attenuation of antibiotic resistance in chronic wound bacteria. It is unclear whether HBOT alters the population dynamics of non-healing wound microfloraThe Diving Diseases Research Centr

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    No full text
    Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics

    References

    No full text
    corecore