6 research outputs found

    Rapid Evolution of Silver Nanoparticle Resistance in Escherichia Coli

    Get PDF
    The recent exponential increase in the use of engineered nanoparticles (eNPs) means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides. Unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics). Many of these eNPs are composed of heavy metals or metal oxides such as silver, gold, zinc, titanium dioxide, and zinc oxide. It is thought that since metallic/metallic oxide NPs impact so many aspects of bacterial physiology that it will difficult for bacteria to evolve resistance to them. This study utilized laboratory experimental evolution to evolve silver nanoparticle (AgNP) resistance in the bacterium Escherichia coli (K-12 MG1655), a bacterium that does not harbor any known silver resistance elements. After 225 generations of exposure to the AgNP environment, the treatment populations demonstrated greater fitness vs. control strains as measured by optical density (OD) and colony forming units (CFU) in the presence of varying concentrations of 10 nm citrate-coated silver nanoparticles (AgNP) or silver nitrate (AgNO3). Genomic analysis shows that changes associated with AgNP resistance were already accumulating within the treatment populations by generation 100, and by generation 200 three mutations had swept to high frequency in the AgNP resistance stocks. This study indicates that despite previous claims to the contrary bacteria can easily evolve resistance to AgNPs, and this occurs by relatively simple genomic changes. These results indicate that care should be taken with regards to the use of eNPs as biocides as well as with regards to unintentional exposure of microbial communities to eNPs in waste products

    An integrated command and control architecture concept for unmanned systems in the year 2030

    Get PDF
    U.S. Forces require an integrated Command and Control Architecture that enables operations of a dynamic mix of manned and unmanned systems. The level of autonomous behavior correlates to: 1) the amount of trust with the reporting vehicles, and 2) the multi-spectral perspective of the observations. The intent to illuminate the architectural issues for force protection in 2030 was based on a multi-phased analytical model of High Value Unit (HVU) defense. The results showed that autonomous unmanned aerial vehicles are required to defeat high-speed incoming missiles. To evaluate the level of autonomous behavior required for an integrated combat architecture, geometric distributions were modeled to determine force positioning, based on a scenario driven Detect-to-Engage timeline. Discrete event simulation was used to schedule operations, and a datalink budget assessment of communications to determine the critical failure paths in the the integrated combat architecture. The command and control principles used in the integrated combat architecture were based on Boyd's OODA (Obseve, Orient, Decide, and Act) Loop. A conservative fleet size estimate, given the uncertainties of the coverage overlap and radar detection range, a fleet size of 35 should be anticipated given an UAV detection range of 20km and radar coverage overlap of 4 seconds.http://archive.org/details/anintegratedcomm109455244US Navy (USN) authorsApproved for public release; distribution is unlimited

    Annotated Bibliography

    No full text

    The formation of college English: A survey of the archives of eighteenth‐century rhetorical theory and practice

    No full text

    1996 Annual Selected Bibliography

    No full text
    corecore