523 research outputs found

    Extraction of the D13(1520) photon-decay couplings from pion- and eta-photoproduction data

    Get PDF
    We compare results for the D13(1520) photon-decay amplitudes determined in analyses of eta- and pion-photoproduction data. The ratio of helicity amplitudes (A_3/2 / A_1/2), determined from eta-photoproduction data, is quite different from that determined in previous analyses of pion-photoproduction data. We consider how strongly the existing pion-photoproduction data constrain both this ratio and the individual photon-decay amplitudes.Comment: 7 pages, 2 figure

    J/Psi Suppression in Heavy Ion Collisions at the CERN SPS

    Full text link
    We reexamine the production of J/Psi and other charmonium states for a variety of target-projectile choices at the SPS. For this study we use a newly constructed cascade code LUCIFER II, which yields acceptable descriptions of both hard and soft processes, specifically Drell-Yan and hidden charm production, and soft energy loss and meson production, at the SPS. Glauber calculations of other authors are redone, and compared directly to the cascade results. The modeling of the charmonium states differs from that of earlier workers in its unified treatment of the hidden charm meson spectrum, which is introduced from the outset as a set of coupled states. The result is a description of the NA38 and NA50 data in terms of a conventional hadronic picture. The apparently anomalous suppression found in the most massive Pb+Pb system arises from three sources: destruction in the initial nucleon-nucleon cascade, use of coupled channels to exploit the larger breakup in the less bound Chi and Psi' states, and comover interaction in the final low energy phase.Comment: 36 pages (15 figures

    A Review of Recent Developments in Atomic Processes for Divertors and Edge Plasmas

    Full text link
    The most promising concepts for power and particle control in tokamaks and other fusion experiments rely upon atomic processes to transfer the power and momentum from the edge plasma to the plasma chamber walls. This places a new emphasis on processes at low temperatures (1-200 eV) and high densities (10^20-10^22 m^-3). The most important atomic processes are impurity and hydrogen radiation, ionization, excitation, recombination, charge exchange, radiation transport, molecular collisions, and elastic scattering of atoms, molecules and ions. Important new developments have occurred in each of these areas. The best available data for these processes and an assessment of their role in plasma wall interactions are summarized, and the major areas where improved data are needed are reviewed.Comment: Preprint for the 11th PSI meeting, postscript with 22 figures, 40 page

    The research-teaching nexus: A case study of students' awareness, experiences and perceptions of research

    Get PDF
    This paper presents a case study of students' awareness, experiences and perceptions of research in a 'new' university in the UK. The findings are based on a questionnaire of almost 200 students and five small group interviews. Many of the students participating in this research perceived clear benefits to their learning from staff research, including being taught by enthusiastic staff, enhanced staff credibility, and the reflected glory of being taught by well-known researchers. However, they also perceived disadvantages, particularly with regard to staff availability, and did not believe that staff research should take priority over their needs as learners. They recognised that their awareness of the nature of research and the development of research skills increased most when they were actively involved in undertaking research projects. Several students also perceived benefits for future employment from their participation in research activities. The questionnaire has been used by several other universities around the world to benchmark their practices. © 2010 Taylor & Francis

    Ionic and electronic structure of sodium clusters up to N=59

    Get PDF
    We determined the ionic and electronic structure of sodium clusters with even electron numbers and 2 to 59 atoms in axially averaged and three-dimensional density functional calculations. A local, phenomenological pseudopotential that reproduces important bulk and atomic properties and facilitates structure calculations has been developed. Photoabsorption spectra have been calculated for Na2\mathrm{Na}_2, Na8\mathrm{Na}_8, and Na9+\mathrm{Na}_9^+ to Na59+\mathrm{Na}_{59}^+. The consistent inclusion of ionic structure considerably improves agreement with experiment. An icosahedral growth pattern is observed for Na19+\mathrm{Na}_{19}^+ to Na59+\mathrm{Na}_{59}^+. This finding is supported by photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality can be requested from the author

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde

    The Stern-Gerlach Experiment Revisited

    Full text link
    The Stern-Gerlach-Experiment (SGE) of 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on today's knowledge we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for angular momentum quantization in the quantum world and thus also for the existence of directional quantization of all angular momenta in the process of measurement. It measured for the first time a ground state property of an atom, it produced for the first time a `spin-polarized' atomic beam, it almost revealed the electron spin. The SGE was the first fully successful molecular beam experiment with high momentum-resolution by beam measurements in vacuum. This technique provided a new kinematic microscope with which inner atomic or nuclear properties could be investigated. The original SGE is described together with early attempts by Einstein, Ehrenfest, Heisenberg, and others to understand directional quantization in the SGE. Heisenberg's and Einstein's proposals of an improved multi-stage SGE are presented. The first realization of these proposals by Stern, Phipps, Frisch and Segr\`e is described. The set-up suggested by Einstein can be considered an anticipation of a Rabi-apparatus. Recent theoretical work is mentioned in which the directional quantization process and possible interference effects of the two different spin states are investigated. In full agreement with the results of the new quantum theory directional quantization appears as a general and universal feature of quantum measurements. One experimental example for such directional quantization in scattering processes is shown. Last not least, the early history of the `almost' discovery of the electron spin in the SGE is revisited.Comment: 50pp, 17 fig

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Standard Model backgrounds to supersymmetry searches

    Full text link
    This work presents a review of the Standard Model sources of backgrounds to the search of supersymmetry signals. Depending on the specific model, typical signals may include jets, leptons, and missing transverse energy due to the escaping lightest supersymmetric particle. We focus on the simplest case of multijets and missing energy, since this allows us to expose most of the issues common to other more complex cases. The review is not exhaustive, and is aimed at collecting a series of general comments and observations, to serve as guideline for the process that will lead to a complete experimental determination of size and features of such SM processes.Comment: To appear in the J. Wess memorial volume, "Supersymmetry on the Eve of the LHC", to be published in European Physical Journal
    corecore