359 research outputs found
Antinuclear antibodies (ANA) in chronic hepatitis C virus infection: correlates of positivity and clinical relevance.
We examined correlates of antinuclear antibody (ANA) positivity (ANA+) in individuals with chronic hepatitis C virus (HCV) infection and the effect of positivity on clinical outcome of HCV. Pretreatment sera from 645 patients from three centres in Sweden (n = 225), the UK (n = 207) and Italy (n = 213) were evaluated by indirect immunofluorescence on Hep-2 cells for ANA pattern and titre by a single laboratory. Liver biopsies were all scored by one pathologist. A total of 258 patients were subsequently treated with interferon monotherapy. There was a significant difference in the prevalence of ANA (1:40) by geographic location: Lund 4.4%, London 8.7%, Padova 10.3% [odds ratio (OR) = 0.66; 95% CI: 0.46-0.94; P = 0.023]. Duration of HCV infection, age at infection, current age, route of infection, viral genotype, alcohol consumption, fibrosis stage and inflammatory score were not correlated with ANA+ or ANA pattern. Female gender was correlated with ANA+ and this association persisted in multivariable analyses (OR = 3.0; P = 0.002). Increased plasma cells were observed in the liver biopsies of ANA-positive individuals compared with ANA-negative individuals, while a trend towards decreased lymphoid aggregates was observed [hazard ratio (HR) = 9.0, P = 0.037; HR = 0.291, P = 0.118, respectively]. No correlations were observed between ANA positivity and nonresponse to therapy (OR = 1.4; P = 0.513), although ANA+ was correlated with faster rates of liver fibrosis, this was not statistically significant (OR = 1.8; P = 0.1452). Low titre ANA+ should not be a contraindication for interferon treatment. Our observation of increased plasma cells in ANA+ biopsies might suggest B-cell polyclonal activity with a secondary clinical manifestation of increased serum immunoglobulins
On supersymmetric quantum mechanics
This paper constitutes a review on N=2 fractional supersymmetric Quantum
Mechanics of order k. The presentation is based on the introduction of a
generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian
can be associated with the algebra W_k. This general Hamiltonian covers various
supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller
system, fractional supersymmetric oscillator of order k, etc.). The case of
ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection
between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric
Quantum Mechanics is briefly described. A realization of the algebra W_k, of
the N=2 supercharges and of the corresponding Hamiltonian is given in terms of
deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of
Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E.
Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200
Interactivity Mitigates the Impact of Working Memory Depletion on Mental Arithmetic Performance
Doing long sums in the absence of complementary actions or artefacts is a multi-step procedure that quickly taxes working memory; congesting the phonological loop further handicaps performance. In the experiment reported here, participants completed long sums either with hands down?the low interactivity condition?or by moving numbered tokens?the high interactivity condition?while they repeated ?the? continuously, loading the phonological loop, or not. As expected, interactivity and articulatory suppression substantially affected performance; critically, the effect of articulatory suppression was stronger in the low than in the high interactivity condition. In addition, independent measure of mathematics anxiety predicted the impact of articulatory suppression on performance only in the low (not high) interactivity condition. These findings suggest that interactivity augmented overall or systemic working memory resources and diminished the effect of mathematics anxiety, underscoring the importance of characterizing the properties of the system as it is configured by the dynamic agent-environment coupling
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Precise measurement of the W-boson mass with the CDF II detector
We have measured the W-boson mass MW using data corresponding to 2.2/fb of
integrated luminosity collected in proton-antiproton collisions at 1.96 TeV
with the CDF II detector at the Fermilab Tevatron collider. Samples consisting
of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement
MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most
precise measurement of the W-boson mass to date and significantly exceeds the
precision of all previous measurements combined
- …