359 research outputs found

    Antinuclear antibodies (ANA) in chronic hepatitis C virus infection: correlates of positivity and clinical relevance.

    No full text
    We examined correlates of antinuclear antibody (ANA) positivity (ANA+) in individuals with chronic hepatitis C virus (HCV) infection and the effect of positivity on clinical outcome of HCV. Pretreatment sera from 645 patients from three centres in Sweden (n = 225), the UK (n = 207) and Italy (n = 213) were evaluated by indirect immunofluorescence on Hep-2 cells for ANA pattern and titre by a single laboratory. Liver biopsies were all scored by one pathologist. A total of 258 patients were subsequently treated with interferon monotherapy. There was a significant difference in the prevalence of ANA (1:40) by geographic location: Lund 4.4%, London 8.7%, Padova 10.3% [odds ratio (OR) = 0.66; 95% CI: 0.46-0.94; P = 0.023]. Duration of HCV infection, age at infection, current age, route of infection, viral genotype, alcohol consumption, fibrosis stage and inflammatory score were not correlated with ANA+ or ANA pattern. Female gender was correlated with ANA+ and this association persisted in multivariable analyses (OR = 3.0; P = 0.002). Increased plasma cells were observed in the liver biopsies of ANA-positive individuals compared with ANA-negative individuals, while a trend towards decreased lymphoid aggregates was observed [hazard ratio (HR) = 9.0, P = 0.037; HR = 0.291, P = 0.118, respectively]. No correlations were observed between ANA positivity and nonresponse to therapy (OR = 1.4; P = 0.513), although ANA+ was correlated with faster rates of liver fibrosis, this was not statistically significant (OR = 1.8; P = 0.1452). Low titre ANA+ should not be a contraindication for interferon treatment. Our observation of increased plasma cells in ANA+ biopsies might suggest B-cell polyclonal activity with a secondary clinical manifestation of increased serum immunoglobulins

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200

    Interactivity Mitigates the Impact of Working Memory Depletion on Mental Arithmetic Performance

    Get PDF
    Doing long sums in the absence of complementary actions or artefacts is a multi-step procedure that quickly taxes working memory; congesting the phonological loop further handicaps performance. In the experiment reported here, participants completed long sums either with hands down?the low interactivity condition?or by moving numbered tokens?the high interactivity condition?while they repeated ?the? continuously, loading the phonological loop, or not. As expected, interactivity and articulatory suppression substantially affected performance; critically, the effect of articulatory suppression was stronger in the low than in the high interactivity condition. In addition, independent measure of mathematics anxiety predicted the impact of articulatory suppression on performance only in the low (not high) interactivity condition. These findings suggest that interactivity augmented overall or systemic working memory resources and diminished the effect of mathematics anxiety, underscoring the importance of characterizing the properties of the system as it is configured by the dynamic agent-environment coupling

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined
    corecore