218 research outputs found
Enduring effects of severe developmental adversity, including nutritional deprivation, on cortisol metabolism in aging Holocaust survivors
OBJECTIVE: In animal models, early life exposure to major environmental challenges such as malnutrition and stress results in persisting cardiometabolic, neuroendocrine and affective effects. While such effects have been associated with pathogenesis, the widespread occurrence of ‘developmental programming’ suggests it has adaptive function. Glucocorticoids may mediate ‘programming’ and their metabolism is known to be affected by early life events in rodents. To examine these relationships in humans, cortisol metabolism and cardiometabolic disease manifestations were examined in Holocaust survivors in relation to age at exposure and affective dysfunction, notably lifetime posttraumatic stress disorder (PTSD). METHODS: 51 Holocaust survivors and 22 controls without Axis I disorder collected 24-hr urine samples and were evaluated for psychiatric disorders and cardiometabolic diagnoses. Corticosteroids and their metabolites were assayed by gas chromatography mass spectroscopy (GCMS); cortisol was also measured by radioimmunoassay (RIA). RESULTS: Holocaust survivors showed reduced cortisol by RIA, and decreased levels of 5α-tetrahydrocortisol (5α-THF) and total glucocorticoid production by GCMS. The latter was associated with lower cortisol metabolism by 5α-reductase and 11β-hydroxysteroid dehydrogenase (11β-HSD) type-2. The greatest decrements were associated with earliest age of Holocaust exposure and less severe PTSD symptomatology. Cardiometabolic manifestations were associated with decreased 11β-HSD-2 activity. In contrast to the relationship in Holocaust survivors, in controls, 5α-reductase was positively associated with trauma-related symptoms. CONCLUSION: Extreme malnutrition and related stress during development is associated with long-lived alterations in specific pathways of glucocorticoid metabolism. These effects may be adaptive and link with lower risks of cardiometabolic and stress-related disorders in later life
Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease
<p>Abstract</p> <p>Background</p> <p>The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1.</p> <p>Results</p> <p>We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human <it>APOE4 </it>gene showed significant differences in Nyggf4 expression.</p> <p>Conclusions</p> <p>These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.</p
Associations of hemoglobin A1c with cognition reduced for long diabetes duration
IntroductionAssociations of some risk factors with poor cognition, identified prior to age 75, are reduced or reversed in very old age. The Protected Survivor Model predicts this interaction due to enhanced survival of those with extended risk factor duration. In a younger sample, this study examines the association of cognition with the mean hemoglobin A1c risk factor over the time at risk, according to its duration.MethodsThe interaction of mean hemoglobin A1c (averageâ =â 9.8%), evaluated over duration (averageâ =â 116.8â months), was examined for overall cognition and three cognitive domains in a sample of 150 â youngâ oldâ veterans (mean ageâ =â 70) with type 2 diabetes.ResultsThe predicted interactions were significant for overall cognition and attention, but not executive functions/language and memory.DiscussionFindings extend the Protected Survivor Model to a â youngâ oldâ sample, from the very old. This model suggests focusing on individuals with good cognition despite prolonged high risk when seeking protective factors.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152553/1/trc2jtrci201911009.pd
Dietary Composition Modulates Brain Mass and Solubilizable ABeta Levels in a Mouse Model of Aggressive Alzheimer\u27s Amyloid Pathology
Objective: Alzheimer\u27s disease (AD) is a progressive neurodegenerative disease of the central nervous system (CNS). Recently, an increased interest in the role diet plays in the pathology of AD has resulted in a focus on the detrimental effects of diets high in cholesterol and fat and the beneficial effects of caloric restriction. The current study examines how dietary composition modulates cerebral amyloidosis and neuronal integrity in the TgCRND8 mouse model of AD. Methods: From 4 wks until 18 wks of age, male and female TgCRND8 mice were maintained on one of four diets: (1) reference (regular) commercial chow; (2) high fat/low carbohydrate custom chow (60 kcal% fat/30 kcal% protein/10 kcal% carbohydrate); (3) high protein/low carbohydrate custom chow (60 kcal% protein/30 kcal% fat/10 kcal% carbohydrate); or (4) high carbohydrate/low fat custom chow (60 kcal% carbohydrate/30 kcal% protein/10 kcal% fat). At age 18 wks, mice were sacrificed, and brains studied for (a) wet weight; (b) solubilizable Aβ content by ELISA; (c) amyloid plaque burden; (d) stereologic analysis of selected hippocampal subregions. Results: Animals receiving a high fat diet showed increased brain levels of solubilizable Aβ, although we detected no effect on plaque burden. Unexpectedly, brains of mice fed a high protein/low carbohydrate diet were 5% lower in weight than brains from all other mice. In an effort to identify regions that might link loss of brain mass to cognitive function, we studied neuronal density and volume in hippocampal subregions. Neuronal density and volume in the hippocampal CA3 region of TgCRND8 mice tended to be lower in TgCRND8 mice receiving the high protein/low carbohydrate diet than in those receiving the regular chow. Neuronal density and volume were preserved in CA1 and in the dentate gyrus. Interpretation: Dissociation of Aβ changes from brain mass changes raises the possibility that diet plays a role not only in modulating amyloidosis but also in modulating neuronal vulnerability. However, in the absence of a study of the effects of a high protein/low carbohydrate diet on nontransgenic mice, one cannot be certain how much, if any, of the loss of brain mass exhibited by high protein/low carbohydrate diet-fed TgCRND8 mice was due to an interaction between cerebral amyloidosis and diet. Given the recent evidence that certain factors favor the maintenance of cognitive function in the face of substantial structural neuropathology, we propose that there might also exist factors that sensitize brain neurons to some forms of neurotoxicity, including, perhaps, amyloid neurotoxicity. Identification of these factors could help reconcile the poor clinicopathological correlation between cognitive status and structural neuropathology, including amyloid pathology
Dietary composition modulates brain mass and solubilizable Aβ levels in a mouse model of aggressive Alzheimer's amyloid pathology
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Objective Alzheimer's disease (AD) is a progressive neurodegenerative disease of the central nervous system (CNS). Recently, an increased interest in the role diet plays in the pathology of AD has resulted in a focus on the detrimental effects of diets high in cholesterol and fat and the beneficial effects of caloric restriction. The current study examines how dietary composition modulates cerebral amyloidosis and neuronal integrity in the TgCRND8 mouse model of AD. Methods From 4 wks until 18 wks of age, male and female TgCRND8 mice were maintained on one of four diets: (1) reference (regular) commercial chow; (2) high fat/low carbohydrate custom chow (60 kcal% fat/30 kcal% protein/10 kcal% carbohydrate); (3) high protein/low carbohydrate custom chow (60 kcal% protein/30 kcal% fat/10 kcal% carbohydrate); or (4) high carbohydrate/low fat custom chow (60 kcal% carbohydrate/30 kcal% protein/10 kcal% fat). At age 18 wks, mice were sacrificed, and brains studied for (a) wet weight; (b) solubilizable Aβ content by ELISA; (c) amyloid plaque burden; (d) stereologic analysis of selected hippocampal subregions. Results Animals receiving a high fat diet showed increased brain levels of solubilizable Aβ, although we detected no effect on plaque burden. Unexpectedly, brains of mice fed a high protein/low carbohydrate diet were 5% lower in weight than brains from all other mice. In an effort to identify regions that might link loss of brain mass to cognitive function, we studied neuronal density and volume in hippocampal subregions. Neuronal density and volume in the hippocampal CA3 region of TgCRND8 mice tended to be lower in TgCRND8 mice receiving the high protein/low carbohydrate diet than in those receiving the regular chow. Neuronal density and volume were preserved in CA1 and in the dentate gyrus. Interpretation Dissociation of Aβ changes from brain mass changes raises the possibility that diet plays a role not only in modulating amyloidosis but also in modulating neuronal vulnerability. However, in the absence of a study of the effects of a high protein/low carbohydrate diet on nontransgenic mice, one cannot be certain how much, if any, of the loss of brain mass exhibited by high protein/low carbohydrate diet-fed TgCRND8 mice was due to an interaction between cerebral amyloidosis and diet. Given the recent evidence that certain factors favor the maintenance of cognitive function in the face of substantial structural neuropathology, we propose that there might also exist factors that sensitize brain neurons to some forms of neurotoxicity, including, perhaps, amyloid neurotoxicity. Identification of these factors could help reconcile the poor clinicopathological correlation between cognitive status and structural neuropathology, including amyloid pathology.Published versio
Depressive Symptoms Are Associated with Cognitive Function in the Elderly with Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a metabolic condition associated with poor clinical and cognitive outcomes including vascular disease, depressive symptoms, cognitive impairment, and dementia. In the general elderly population, depression has been consistently identified as a risk factor for cognitive impairment/decline. However, the association between depression and cognitive function in T2D has been understudied.
Objective: We investigated the association between depression and cognitive function in a large sample of cognitively normal elderly with T2D.
Methods: In this cross-sectional study, we examined 738 participants, aged 65–88 years old, enrolled in the Israel Diabetes and Cognitive Decline study. For each cognitive domain (Episodic Memory, Executive Function, Attention/Working Mem- ory, Language/Semantic Categorization) and Overall Cognition, multiple linear regressions assessed its association with depression (score greater than 5 on the 15-item version of the Geriatric Depression Scale [GDS]), adjusting for age, sex, and education.
Results: Depression (n = 66, 8.9%) was associated with worse performance on tasks of Executive Function (p = 0.004), Language/Semantic Categorization (p \u3c 0.001), and Overall Cognition (p \u3c 0.002), but not Episodic Memory (p = 0.643) or Attention/Working Memory (p = 0.488). Secondary analyses using GDS as a continuous variable did not sub- stantially change the results. Adjusting also for a history of antidepressant medication use slightly weakened the findings.
Conclusion: Significant associations of depression with several cognitive domains and Overall Cognition even in cognitively normal elderly with T2D, suggest that depression may have a role in impaired cognitive function in T2D, which may be attenuated by antidepressants
FE65 Binds Teashirt, Inhibiting Expression of the Primate-Specific Caspase-4
The Alzheimer disease (AD) amyloid protein precursor (APP) can bind the FE65 adaptor protein and this complex can regulate gene expression. We carried out yeast two-hybrid studies with a PTB domain of FE65, focusing on those genes that might be involved in nuclear signaling, and identified and validated Teashirt proteins as FE65 interacting proteins in neurons. Using reporter systems, we observed that FE65 could simultaneously recruit SET, a component of the inhibitor of acetyl transferase, and Teashirt, which in turn recruited histone deacetylases, to produce a powerful gene-silencing complex. We screened stable cell lines with a macroarray focusing on AD-related genes and identified CASP4, encoding caspase-4, as a target of this silencing complex. Chromatin immunoprecipitation showed a direct interaction of FE65 and Teashirt3 with the promoter region of CASP4. Expression studies in postmortem samples demonstrated decreasing expression of Teashirt and increasing expression of caspase-4 with progressive cognitive decline. Importantly, there were significant increases in caspase-4 expression associated with even the earliest neuritic plaque changes in AD. We evaluated a case-control cohort and observed evidence for a genetic association between the Teashirt genes TSHZ1 and TSHZ3 and AD, with the TSHZ3 SNP genotype correlating with expression of Teashirt3. The results were consistent with a model in which reduced expression of Teashirt3, mediated by genetic or other causes, increases caspase-4 expression, leading to progression of AD. Thus the cell biological, gene expression and genetic data support a role for Teashirt/caspase-4 in AD biology. As caspase-4 shows evidence of being a primate-specific gene, current models of AD and other neurodegenerative conditions may be incomplete because of the absence of this gene in the murine genome
The Association of Depressive Symptoms With Brain Volume Is Stronger Among Diabetic Elderly Carriers of the Haptoglobin 1-1 Genotype Compared to Non-carriers
Aim: Depression is highly prevalent in type 2 diabetes and is associated with lower adherence to medical treatments, worse glycemic control, and increased risk for diabetes-related complications. The mechanisms underlying depression in type 2 diabetes are unclear. The haptoglobin (Hp) genotype is associated with type 2 diabetes related complications including increased risk for cerebrovascular pathology and worse cognitive performance. Its relationship with depression is unknown. We investigated the role of Hp genotype on the association of depression with brain and white matter hyperintensities (WMH) volumes.Methods: Depressive symptoms (measured with the 15-item Geriatric Depression Scale), brain MRI, and Hp genotypes, were examined in elderly subjects with type 2 diabetes [29 (13.8%) Hp 1–1 carriers and 181 (86.2%) non-carriers]. The interaction of Hp genotype with number of depressive symptoms on regional brain measures was assessed using regression analyses.Results: The significant interactions were such that in Hp 1–1 carriers but not in non-carriers, number of depressive symptoms was associated with overall frontal cortex (p = 0.01) and WMH (p = 0.04) volumes but not with middle temporal gyrus volume (p = 0.43).Conclusions: These results suggest that subjects with type 2 diabetes carrying the Hp 1–1 genotype may have higher susceptibility to depression in the context of white matter damage and frontal lobe atrophy. The mechanisms underlying depression in diabetes may differ by Hp genotype
- …