163 research outputs found

    On Shannon-Jaynes Entropy and Fisher Information

    Full text link
    The fundamentals of the Maximum Entropy principle as a rule for assigning and updating probabilities are revisited. The Shannon-Jaynes relative entropy is vindicated as the optimal criterion for use with an updating rule. A constructive rule is justified which assigns the probabilities least sensitive to coarse-graining. The implications of these developments for interpreting physics laws as rules of inference upon incomplete information are briefly discussed.Comment: Presented at the 27th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Saratoga Springs, NY, July 8-13, 200

    The asteroseismic ground-based observational counterpart of CoRoT

    Full text link
    We present different aspects of the ground-based observational counterpart of the CoRoT satellite mission. We give an overview of the selected asteroseismic targets, the numerous instruments and observatories involved, and the first scientific results.Comment: 3 pages, 2 tables, 1 figure, to be published in the conference proceedings 'Stellar Pulsation: Challenges for Theory and Observation' (31 May - 5 June, Santa Fe, New Mexico, US), publishers: American Institute of Physic

    Planck intermediate results: II. Comparison of sunyaev-zeldovich measurements from planck and from the arcminute microkelvin imager for 11 galaxy clusters

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Coherent psi (2S) photo-production in ultra-peripheral Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    We have performed the first measurement of the coherent psi(2S) photo-production cross section in ultraperipheral Pb-Pb collisions at the LHC. This charmonium excited state is reconstructed via the psi(2S) -> l(+)l(-) and ->(2S) -> J/psi pi(+)pi(-) decays, where the J/psi decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 mu b(-1). The cross section for coherent psi(2S) production in the rapidity interval -0.9 <y <0.9is d sigma(coh)(psi(2S))/dy = 0.83 +/- 0.19 (stat+syst) mb. The psi(2S) to J/psi coherent cross section ratio is 0.34(-0.07)(+0.08)(stat+syst). The obtained results are compared to predictions from theoretical models. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at root s=13 TeV

    Get PDF
    A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb(-1), from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling lambda ''(312) or lambda ''(323) and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the (t) over tilde -> qq' scenario.Peer reviewe

    Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment

    Get PDF
    From April to July 2018, a data sample at the peak energy of the γ(4S) resonance was collected with the Belle II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle II experiment. Using Bhabha and digamma events, we measure the integrated luminosity of the data sample to be (496.3 ± 0.3 ± 3.0) pb-1, where the first uncertainty is statistical and the second is systematic. This work provides a basis for future luminosity measurements at Belle II

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF
    Parton energy loss in the quark–gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb−1 of Pb+Pb data and 260 pb−1 of pp data, both at √sNN = 5.02 TeV, with the ATLAS detector. The process pp → γ +jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss
    corecore