51 research outputs found

    Noninferiority of cetuximab every-2-weeks versus standard once-weekly administration schedule for the first-line treatment of RAS wild-type metastatic colorectal cancer

    Get PDF
    Abstract Aim This study assessed whether cetuximab 500 mg/m2 administered every 2 weeks (Q2W), when combined with chemotherapy as a first-line (1L) treatment, was noninferior to the approved dose (400 mg/m2 followed by 250 mg/m2 once weekly [Q1W]) for overall survival (OS) in adults with RAS wild-type metastatic colorectal cancer (mCRC). Methods This pooled analysis included patients receiving 1L treatment with cetuximab Q1W or Q2W in combination with chemotherapy from post-authorisation studies with patient-level data available to the sponsor. Baseline characteristics were adjusted with a propensity score using inverse probability of treatment weighting (IPTW). Noninferiority in terms of OS was tested with a noninferiority margin for the hazard ratio (HR) of 1.25 using a Cox proportional hazards regression model. Secondary outcomes were progression-free survival (PFS), overall response rate (ORR) and rates of lung/liver metastases resection and serious adverse events. Results OS time was noninferior in the Q2W cohort (n = 554) compared to the Q1W cohort (n = 763), with a HR after IPTW (95% confidence interval) of 0.827 (0.715–0.956) and median OS times of 24.7 (Q1W) and 27.9 (Q2W) months. There were no major differences in PFS (HR: 0.915 [0.804–1.042]). The odds ratios (ORs) after IPTW for ORR (1.292 [1.031–1.617]) and the rates of lung/liver metastases resection (1.419 [1.043–1.932]) favoured the Q2W regimen. No differences were noted in the occurrence rate of any SAE between groups; the OR after IPTW was 1.089 (0.858–1.382). Conclusions The cetuximab Q2W regimen was noninferior to the Q1W regimen for OS in the 1L treatment of mCRC

    Unrestrained cleavage of Roquin-1 by MALT1 induces spontaneous T cell activation and the development of autoimmunity

    Get PDF
    Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genet-ically rendered a single MALT1 substrate, the RNA- binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is trans-lated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high- affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease- associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high- affinity Roquin-1 target I kappa BNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents

    Get PDF
    Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    AlteraçÔes musculares e esqueléticas cervicais em mulheres disfÎnicas

    Get PDF
    Termo clĂ­nico, a disfonia envolve a todas as transformaçÔes e dificuldades durante a emissĂŁo vocal, as quais resultam no impedimento da produção normal da voz. Pacientes como esse problema, podem apresentar desequilĂ­brio da musculatura crĂąniocervical e larĂ­ngea e lesĂŁo orgĂąnica subjacente. A disfonia resulta em modificaçÔes fonatĂłrias, limitando atividades diĂĄrias relacionadas ao uso da voz, impactando na vida social e na qualidade de vida do indivĂ­duo. Este estudo teve como objetivo analisar alteraçÔes musculares e esquelĂ©ticas cervicais em mulheres com disfonia, conforme identificado na literatura cientĂ­fica sobre o tema. Para isso, realizou-se uma revisĂŁo integrativa de literatura, selecionando estudos nas bases de dados Literatura Latino-americana e do Caribe em CiĂȘncias da SaĂșde (Lilacs) e Medical Literature Analysis and Retrieval System Online (Medline). A partir da anĂĄlise qualitativa dos resultados, concluiu-se que dor intensa na regiĂŁo posterior do pescoço e na laringe se manifestam em mulheres disfĂŽnicas. Contribuem para isso a função prejudicada da articulação cervical e alteraçÔes da amplitude de movimento cervical. Com isso, compreende-se que o abuso vocal e o mau uso da voz como fatores mais comuns para a disfonia
    • 

    corecore