2,087 research outputs found

    Fundamental Limits of Nonintrusive Load Monitoring

    Full text link
    Provided an arbitrary nonintrusive load monitoring (NILM) algorithm, we seek bounds on the probability of distinguishing between scenarios, given an aggregate power consumption signal. We introduce a framework for studying a general NILM algorithm, and analyze the theory in the general case. Then, we specialize to the case where the error is Gaussian. In both cases, we are able to derive upper bounds on the probability of distinguishing scenarios. Finally, we apply the results to real data to derive bounds on the probability of distinguishing between scenarios as a function of the measurement noise, the sampling rate, and the device usage.Comment: Submitted to the 3rd ACM International Conference on High Confidence Networked Systems (HiCoNS

    A Fast Algorithm for Sparse Controller Design

    Full text link
    We consider the task of designing sparse control laws for large-scale systems by directly minimizing an infinite horizon quadratic cost with an â„“1\ell_1 penalty on the feedback controller gains. Our focus is on an improved algorithm that allows us to scale to large systems (i.e. those where sparsity is most useful) with convergence times that are several orders of magnitude faster than existing algorithms. In particular, we develop an efficient proximal Newton method which minimizes per-iteration cost with a coordinate descent active set approach and fast numerical solutions to the Lyapunov equations. Experimentally we demonstrate the appeal of this approach on synthetic examples and real power networks significantly larger than those previously considered in the literature

    Low-rank semidefinite programming for the MAX2SAT problem

    Full text link
    This paper proposes a new algorithm for solving MAX2SAT problems based on combining search methods with semidefinite programming approaches. Semidefinite programming techniques are well-known as a theoretical tool for approximating maximum satisfiability problems, but their application has traditionally been very limited by their speed and randomized nature. Our approach overcomes this difficult by using a recent approach to low-rank semidefinite programming, specialized to work in an incremental fashion suitable for use in an exact search algorithm. The method can be used both within complete or incomplete solver, and we demonstrate on a variety of problems from recent competitions. Our experiments show that the approach is faster (sometimes by orders of magnitude) than existing state-of-the-art complete and incomplete solvers, representing a substantial advance in search methods specialized for MAX2SAT problems.Comment: Accepted at AAAI'19. The code can be found at https://github.com/locuslab/mixsa
    • …
    corecore