68 research outputs found
Ligand-Induced Conformational Rearrangements Promote Interaction between the Escherichia coli Enterobactin Biosynthetic Proteins EntE and EntB
Siderophores are small-molecule iron chelators that many bacteria synthesize and secrete in order to survive in iron-depleted environments. Biosynthesis of enterobactin, the Escherichia coli catecholate siderophore, requires adenylation of 2,3-dihydroxybenzoic acid (2,3-DHB) by the cytoplasmic enzyme EntE. The DHB-AMP product is then transferred to the active site of holo-EntB subsequent to formation of an EntE–EntB complex. Here we investigate the binding of 2,3-DHB to EntE and how DHB binding affects EntE–EntB interaction. We overexpressed and purified recombinant forms of EntE and EntB with N-terminal hexahistidine tags (H6-EntE and H6-EntB). Isothermal titration calorimetry showed that 2,3-DHB binds to H6-EntE with a 1:1 stoichiometry and a Kd of 7.4 μM. Fluorescence spectra revealed enhanced 2,3-DHB emission at 440 nm (λex = 280 nm) when bound to H6-EntE due to fluorescence resonance energy transfer (FRET) between EntE intrinsic fluorophore donors and bound 2,3-DHB acceptor. A FRET signal was not observed when H6-EntE was mixed with either 2,5-dihydroxybenzoic acid or 3,5-dihydroxybenzoic acid. The H6-EntE–2,3-DHB FRET signal was quenched by H6-EntB in a concentration-dependent manner. From these data, we were able to determine the EC50 of EntE–EntB interaction to be approximately 1.5 μM. We also found by fluorescence and CD measurements that H6-EntB can bind 2,3-DHB, resulting in conformational changes in the protein. Additional alterations in H6-EntB near-UV and far-UV CD spectra were observed upon mixture with H6-EntE and 2,3-DHB, suggesting that further conformational rearrangements occur in EntB upon interaction with substrate-loaded EntE. We also found that H6-EntB as a bait protein pulled down a higher concentration of chromosomally expressed EntE in the presence of exogenous 2,3-DHB. Taken together, our results show that binding of 2,3-DHB to EntE and EntB primes these proteins for efficient complexation, thus facilitating direct channeling of the siderophore precursor 2,3-DHB-AMP
Subunit Orientation in the Escherichia coli Enterobactin Biosynthetic EntA-EntE Complex Revealed by a Two-Hybrid Approach
The siderophore enterobactin is synthesized by the enzymes EntA-F and EntH in the E. coli cytoplasm. We previously reported in vitro evidence of an interaction between tetrameric EntA and monomeric EntE. Here we used bacterial adenylate cyclase two-hybrid (BACTH) assays to demonstrate that the E. coli EntA-EntE interaction occurs intracellularly. Furthermore, to obtain information on subunit orientation in the EntA-EntE complex, we fused BACTH reporter fragments T18 and T25 to EntA and EntE in both N-terminal and C-terminal orientations. To validate functionality of our fusion proteins, we performed Chrome Azurol S (CAS) assays using E. coli entE- and entA- knockout strains transformed with our BACTH constructs. We found that transformants expressing N-terminal and C-terminal T18/T25 fusions to EntE exhibited CAS signals, indicating that these constructs could rescue the entE- phenotype. While expression of EntA with N-terminal T18/T25 fusions exhibited CAS signals, C-terminal fusions did not, presumably due to disruption of the EntA tetramer in vivo. Bacterial growth assays supported our CAS findings. Co-transformation of functional T18/T25 fusions into cya- E. coli BTH101 cells resulted in positive BACTH signals only when T18/T25 fragments were fused to the N-termini of both EntA and EntE. Co-expression of N-terminally fused EntA with C-terminally fused EntE resulted in no detectable BACTH signal. Analysis of protein expression by Western blotting confirmed that the loss of BACTH signal was not due to impaired expression of fusion proteins. Based on our results, we propose that the N-termini of EntA and EntE are proximal in the intracellular complex, while the EntA N-terminus and EntE C-terminus are distal. A protein-protein docking simulation using SwarmDock was in agreement with our experimental observations
A novel set of vectors for Fur-controlled protein expression under iron deprivation in Escherichia coli
Background
In the presence of sufficient iron, the Escherichia coli protein Fur (Ferric Uptake Regulator) represses genes controlled by the Fur box, a consensus sequence near or within promoters of target genes. De-repression of Fur-controlled genes occurs upon iron deprivation. In the E. coli chromosome, there is a bidirectional intercistronic promoter region with two non-overlapping Fur boxes. This region controls Fur-regulated expression of entCEBAH in the clockwise direction and fepB in the anticlockwise direction.
Results
We cloned the E. coli bidirectional fepB/entC promoter region into low-copy-number plasmid backbones (pACYC184 and pBR322) along with downstream sequences encoding epitope tags and a multiple cloning site (MCS) compatible with the bacterial adenylate cyclase two-hybrid (BACTH) system. The vector pFCF1 allows for iron-controlled expression of FLAG-tagged proteins, whereas the pFBH1 vector allows for iron-controlled expression of HA-tagged proteins. We showed that E. coli knockout strains transformed with pFCF1-entA, pFCF1-entE and pFBH1-entB express corresponding proteins with appropriate epitope tags when grown under iron restriction. Furthermore, transformants exhibited positive chrome azurol S (CAS) assay signals under iron deprivation, indicating that the transformants were functional for siderophore biosynthesis. Western blotting and growth studies in rich and iron-depleted media demonstrated that protein expression from these plasmids was under iron control. Finally, we produced the vector pFCF2, a pFCF1 derivative in which a kanamycin resistance (KanR) gene was engineered in the direction opposite of the MCS. The entA ORF was then subcloned into the pFCF2 MCS. Bidirectional protein expression in an iron-deprived pFCF2-entA transformant was confirmed using antibiotic selection, CAS assays and growth studies.
Conclusions
The vectors pFCF1, pFCF2, and pFBH1 have been shown to use the fepB/entC promoter region to control bidirectional in trans expression of epitope-tagged proteins in iron-depleted transformants. In the presence of intracellular iron, protein expression from these constructs was abrogated due to Fur repression. The compatibility of the pFCF1 and pFBH1 backbones allows for iron-controlled expression of multiple epitope-tagged proteins from a single co-transformant
Identification of a Surface Glutamine Residue (Q64) of Escherichia coli EntA Required for Interaction with EntE
The enterobactin biosynthetic enzyme EntA forms a complex with EntE, the next enzyme in the pathway, to enhance activation of the enterobactin precursor 2,3-dihydroxybenzoate. Here we used phage display to identify an EntE-interacting region on the surface of EntA. Upon panning immobilized EntE with a random peptide phage library, we recovered 47 unique EntE-binding dodecamer peptide sequences that aligned to a region of the EntA primary sequence corresponding to helix α4. In order to further investigate this region, we mutagenized EntA Q64, a hydrogen-bonding residue found on the surface-exposed face α4. Far-UV circular dichroism, thermal denaturation experiments, and enzymatic assays showed that mutation of EntA residue Gln 64 to alanine (Q64A) had no deleterious effect on EntA structure or function. By following near-UV CD spectral changes, we found that the spectrum of wild-type EntA was altered in the presence of EntE, indicative of conformational changes in EntA aromatic chromophores upon formation of the EntA-EntE complex. However, EntE did not affect the CD spectrum of EntA variant Q64A, demonstrating that this variant did not interact with EntE in a manner similar to wild-type EntA. Analytical ultracentrifugation of wild-type and variant EntA proteins showed that EntA Q64A was predominantly dimeric at 20 μM, unlike wild-type EntA which was predominantly tetrameric. Taken together, our findings establish that EntA α4 is required for efficient formation of the EntA-EntE as well as for EntA oligomerization
The C-glycosyltransferase IroB from Pathogenic Escherichia coli: Identification of Residues Required for Efficient Catalysis
The E. coli C-glycosyltransferase IroB catalyzes formation of a C-C bond between enterobactin and the glucose moiety of UDP-glucose, resulting in the production of mono-, di- and tri-glucosylated enterobactin (MGE, DGE, TGE). To identify catalytic residues, we generated a homology model of IroB from aligned structures of two similar C-glycosyltransferases as templates. Superposition of our homology model onto the structure of a TDP-bound orthologue revealed residue W264 as a possible stabilizer of UDP-glucose. D304 in our model was located near the predicted site of the glucose moiety of UDP-glucose. A loop containing possible catalytic residues (H65, H66, E67) was found at the predicted enterobactin-binding site. We generated IroB variants at positions 65-67, 264, and 304 and investigated variant protein conformations and enzymatic activities. Variants were found to have Tm values similar to wild-type IroB. Fluorescence emission spectra of H65A/H66A, E67A, and D304N were superimposable with wild-type IroB. However, the emission spectrum of W264L was blue-shifted, suggesting solvent exposure of W264. While H65A/H66A retained activity (92% conversion of enterobactin, with MGE as a major product), all other IroB variants were impaired in their abilities to glucosylate enterobactin: E67A catalyzed partial (29%) conversion of enterobactin to MGE; W264L converted 55% of enterobactin to MGE; D304N was completely inactive. Activity-impaired variants were found to bind enterobactin with affinities within 2.5-fold of wild-type IroB. Given our outcomes, we propose that IroB W264 and D304 are required for binding and orienting UDP-glucose, while E67, possibly supported by H65/H66, participates in enterobactin/MGE/DGE deprotonation
Siderophore Transport through Escherichia coli Outer Membrane Receptor FhuA with Disulfide-tethered Cork and Barrel Domains
The hydroxamate siderophore receptor FhuA is a TonB-dependent outer membrane protein of Escherichia coli composed of a C-terminal 22-stranded -barrel occluded by an N-terminal globular cork domain. During siderophore transport into the periplasm, the FhuA cork domain has been proposed to undergo conformational changes that allow transport through the barrel lumen; alternatively, the cork may be completely displaced from the barrel. To probe such changes, site-directed cysteine mutants in the cork domain (L109C and Q112C) and in the barrel domain (S356C and M383C) were created within the putative siderophore transport pathway. Molecular modeling predicted that the double cysteine mutants L109C/S356C and Q112C/M383C would form disulfide bonds, thereby tethering the cork and barrel domains. The double cysteine FhuA mutants were denatured under nonreducing conditions and fluorescently labeled with thiol-specific Oregon Green maleimide. Subsequent SDS-PAGE analysis revealed two distinct species: FhuA containing a disulfide bond and FhuA with free sulfhydryl groups. To address the role of the putative siderophore transport pathway and to evaluate possible rearrangements of the cork domain during ferricrocin transport, disulfide bond formation was enhanced by an oxidative catalyst. Cells containing double cysteine FhuA mutants that were subjected to oxidation during ferricrocin transport exhibited disulfide bond formation to near completion. After disulfide tethering of the cork to the barrel, ferricrocin transport was equivalent to transport by untreated cells. These results demonstrate that blocking the putative siderophore transport pathway does not abrogate ferricrocin uptake. We propose that, during siderophore transport through FhuA, the cork domain remains within the barrel rather than being displaced
Enhanced Binding of TonB to a Ligand-loaded Outer Membrane Receptor: ROLE OF THE OLIGOMERIC STATE OF TonB IN FORMATION OF A FUNCTIONAL FhuA·TonB COMPLEX
The ferric hydroxymate uptake (FhuA) receptor from Escherichia coli facilitates transport of siderophores ferricrocin and ferrichrome and siderophore-antibiotic conjugates such as albomycin and rifamycin CGP 4832. FhuA is also the receptor for phages T5, T1, 80, UC-1, for colicin M and for the antimicrobial peptide microcin MccJ21. Energy for transport is provided by the cytoplasmic membrane complex TonB·ExbB·ExbD, which uses the proton motive force of the cytoplasmic membrane to transduce energy to the outer membrane. To accomplish energy transfer, TonB contacts outer membrane receptors. However, the stoichiometry of TonB· receptor complexes and their sites of interaction remain uncertain. In this study, analyses of FhuA interactions with two recombinant TonB proteins by analytical ultracentrifugation revealed that TonB forms a 2:1 complex with FhuA. The presence of the FhuA-specific ligand ferricrocin enhanced the amounts of complex but is not essential for its formation. Surface plasmon resonance experiments demonstrated that FhuA·TonB interactions are multiple and have apparent affinities in the nanomolar range. TonB also possesses two distinct binding regions: one in the C terminus of the protein, for which binding to FhuA is ferricrocin-independent, and a higher affinity region outside the C terminus, for which ferricrocin enhances interactions with FhuA. Together these experiments establish that FhuA·TonB interactions are more intricate than originally predicted, that the TonB·FhuA stoichiometry is 2:1, and that ferricrocin modulates binding of FhuA to TonB at regions outside the C-terminal domain of TonB
A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
- …
