
 1 

The C-glycosyltransferase IroB from Pathogenic Escherichia 
coli: Identification of Residues Required for Efficient 

Catalysis† 

 

 † This work was supported by Discovery Grant 341983-07 from the Natural Sciences and 

Engineering Research Council of Canada to PDP. 

 

 

Daniel Foshag§, Cory Campbell and Peter D. Pawelekv* 

Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., 

Montreal, Quebec, Canada, H4B 1R6 

§ Current address: Institute for Interfacial Engineering and Plasmatechnology IGVP, University 

of Stuttgart. Stuttgart, Germany. 

v Groupe de Recherche Axé sur la Structure des Protéines (GRASP) 

 

*Correspondence should be addressed to: Peter D. Pawelek, Tel: 514-848-2424 ext. 3118; Fax: 

514-848-2868; E-mail: peter.pawelek@concordia.ca 

 

 

Running title: Identification of residues required for E. coli IroB catalysis. 
 

 
 

 



 2 

Abbreviations:  

The following abbreviations are used in this manuscript: CD: circular dichroism; DGE: di-

glucosylated enterobactin; C-GT: C-glycosyltransferase; DHB: 2,3-dihydroxybenzoic acid; ENT: 

enterobactin; ESI-MS: electrospray ionization mass spectrometry; FPLC: fast protein liquid 

chromatography; GE: glucosylated enterobactin; GT: glycosyltransferase; MGE: mono-

glucosylated enterobactin; NTA: Ni-nitrilotriacetic acid; OD: optical density; PDB: Protein Data 

Bank; RMSD: root-mean-square deviation; RP-HPLC: reversed-phase high-performance liquid 

chromatography; SDS-PAGE: sodium dodecylsulfate-polyacrylamide gel electrophoresis; TCEP: 

Tris(2-carboxyethyl)phosphine; TGE: tri-glucosylated enterobactin. 

  



 3 

Abstract: 
 
The E. coli C-glycosyltransferase IroB catalyzes formation of a C-C bond between enterobactin 

and the glucose moiety of UDP-glucose, resulting in the production of mono-, di- and tri-

glucosylated enterobactin (MGE, DGE, TGE). To identify catalytic residues, we generated a 

homology model of IroB from aligned structures of two similar C-glycosyltransferases as 

templates. Superposition of our homology model onto the structure of a TDP-bound orthologue 

revealed residue W264 as a possible stabilizer of UDP-glucose. D304 in our model was located 

near the predicted site of the glucose moiety of UDP-glucose. A loop containing possible 

catalytic residues (H65, H66, E67) was found at the predicted enterobactin-binding site. We 

generated IroB variants at positions 65-67, 264, and 304 and investigated variant protein 

conformations and enzymatic activities. Variants were found to have Tm values similar to wild-

type IroB. Fluorescence emission spectra of H65A/H66A, E67A, and D304N were 

superimposable with wild-type IroB. However, the emission spectrum of W264L was blue-

shifted, suggesting solvent exposure of W264. While H65A/H66A retained activity (92% 

conversion of enterobactin, with MGE as a major product), all other IroB variants were impaired 

in their abilities to glucosylate enterobactin: E67A catalyzed partial (29%) conversion of 

enterobactin to MGE; W264L converted 55% of enterobactin to MGE; D304N was completely 

inactive. Activity-impaired variants were found to bind enterobactin with affinities within 2.5-

fold of wild-type IroB. Given our outcomes, we propose that IroB W264 and D304 are required 

for binding and orienting UDP-glucose, while E67, possibly supported by H65/H66, participates 

in enterobactin/MGE/DGE deprotonation. 
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Introduction 

Siderophore-mediated iron acquisition is required for virulence by many pathogenic bacteria.1 

The Escherichia coli catecholate siderophore enterobactin (Fig. 1a) is not commonly a virulence 

factor since mammalian hosts can sequester the siderophore via the innate immune system 

protein NGAL (also known as lipocalin 2 or siderocalin). Pathogenic extraintestinal E. coli such 

as uropathogenic E. coli (UPEC)2, avian pathogenic E. coli (APEC)3, the probiotic E. coli strain 

Nissle 19174, as well as Salmonella enterica5, harbor a five-gene cluster known as iroA, which is 

involved in the glucosylation and linearization of enterobactin prior to its secretion. It has been 

shown that glucosylated enterobactin (GE) cannot be efficiently bound by NGAL.6 Pathogens 

containing the iroA cluster can therefore continue to acquire iron from the host while evading 

innate immune system defenses. The iroA cluster is comprised of the genes iroB, iroC, iroD, 

iroE, and iroN that encode the proteins IroB, IroC, IroD, IroE, and IroN, respectively. IroB 

produces GE in the cytoplasm. The inner-membrane transporter IroC facilitates transport of GE 

to the periplasm, where it is linearized by the esterase IroE and then secreted from the cell by a 

currently unknown mechanism. Upon acquisition of extracellular Fe3+, Fe-GE is imported into 

the bacterial cell by the TonB-dependent outer membrane receptor IroN. Finally, the cytoplasmic 

esterase IroD catalyzes the hydrolysis of the triserine trilactone core of GE, resulting in the 

formation of glucosylated DHB-serine subunits. This cleavage of GE facilitates the release of 

iron in the cytoplasm in order to support bacterial growth. 
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 As the first iroA gene product required for production of GE, the 42.3 kDa C-

glycosyltransferase IroB catalyzes the attachment of one, two, or three glucose moieties to 

enterobactin, resulting in the formation of mono-glucosylated enterobactin (MGE) (Fig. 1b), di-

glucosylated enterobactin (DGE) (Fig. 1c), or tri-glucosylated enterobactin (TGE) (Fig. 1d). In 

each round of glucosylation, IroB transfers the glucose moiety from a bound UDP-glucose donor 

co-substrate to one DHB subunit of the enterobactin acceptor co-substrate. The glucose moiety is 

attached to a DHB subunit via C-C bond formation between the anomeric C1' atom of the 

glucose portion of UDP-glucose and the C5 atom of DHB. It has been shown that DGE, also 

known as salmochelin S4, is the principal product of IroB catalysis in vivo.5 The mechanistic 

aspects of C-glycosyltransferases are now beginning to be understood. Recent studies on 

glycosyltransferases that catalyze O- and C-glycosylation of hedamycin7  and urdamycin8 have 

explored two possible mechanisms for glucose attachment to aryl groups on acceptor substrates: 

in the first mechanism, glucose is first directly attached to a deprotonated phenolic group on the 

acceptor, followed by rearrangement of the O-glycoside; in the second mechanism, 

deprotonation of a phenolic group either ortho or para to the site of glucose attachment results in 

aromatic delocalization conferring a nucleophilic character to the carbon atom at which direct 

glucose attachment occurs. Experimental work on urdamycin glycosylation by UrdGT28 

supported the latter mechanism, in which direct glycosylation of urdamycin occurred following 

deprotonation of a phenolic group ortho to the attachment site. This direct glucosylation 

mechanism was supported by subsequent research on IroB by the Walsh group in which 

nucleophilicity of the C5 atom of DHB was suggested to be caused by deprotonation of the 

phenolic group on the DHB C2 carbon para to the C5 position of glucose attachment.9  
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Glycosyltransferase enzymes are widely found in nature, and are grouped into two families of 

folds: GT-A and GT-B (for a recent review, see Chang et al.10 ). Proteins of the GT-A family are 

single-domain folds and generally have a requirement for metals such as Mg2+ or Mn2+. Proteins 

from the GT-B family possess two major Rossmann-like domains: a C-terminal donor-binding 

domain and an N-terminal acceptor-binding domain.11 The products of glycosyltransferase 

enzymes can either retain anomeric configuration of the sugar or invert it; however, there is no 

correlation between whether a GT is retaining or inverting, and whether its fold is GT-A or GT-

B.10 The three-dimensional structure of IroB has not yet been reported, but the enzyme is thought 

to belong to the inverting GT-B family of glycosyltransferases, consistent with other C-

glycosyltransferase structures.9 Although the nature of acceptor molecules across the GT-B 

family is diverse, most donor molecules are nucleotide cofactors such as TDP-glucose or UDP-

glucose. In the case of IroB, the acceptor molecule can be enterobactin, MGE, or DGE. UDP-

glucose has been shown in vitro to be a donor molecule for IroB.9 

 Here we have used homology modeling to gain structural insights into IroB substrate 

binding and catalysis. Our model revealed five residues (H65, H66, E67, W264, and D304) as 

being potentially involved in IroB catalysis. The roles of these residues were experimentally 

verified by enzymological assays and biophysical approaches. Taken together, our results 

demonstrate that IroB residues E67, W264, and D304 are necessary for efficient IroB catalysis, 

likely via their roles in UDP-glucose binding or deprotonation of DHB moieties of bound 

acceptor molecules. Residues H65 and H66 also appear to play a role in IroB catalysis, perhaps 

in the recognition of GE substrates. 
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Materials and Methods 

Reagents  

All chemicals were purchased from Bioshop Canada, Inc. (Burlington, Ontario) unless otherwise 

indicated. Enterobactin was purchased from Sigma-Aldrich (St. Louis, Missouri). Genomic DNA 

from E. coli CFT073 (ATCC code: 700928D-5) was obtained from the Cedarlane Labs 

(Burlington, Ontario). 

 

Homology modeling 

To find suitable template structures for homology-based modelling of IroB, we employed the 

FFAS03 server12  (http://ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl) to query the Protein Data Bank for 

homologous structures using the predicted IroB primary amino acid sequence (Uniprot ID: 

Q8GH22). A multiple alignment based on the FFAS03-generated pairwise structure-based 

alignments of the IroB primary sequence to those of the C-glycosyltransferases UrdGT2 from 

Streptomyces fradiae (PDB code: 2P6P) and SsfS6 from Streptomyces sp. (PDB code: 4G2T) 

was used as input for Modeller v9.13.13  Overall model quality was evaluated using ProSA-

web.14  The stereochemical validity of the IroB model structure was evaluated using 

PROCHECK15 via the PDBSUM server (http://www.ebi.ac.uk/pdbsum). Structural 

superpositions of resulting IroB-model with UrdGT2, SsfS6, as well as the superposition with 

TDP-bound CalG1 (PDB code: 3OTH) were performed using LSQMAN.16  

 

IroB-CH6 expression construct 

The iroB gene was PCR-amplified from E. coli uropathogenic strain CFT073 genomic DNA 

(Cedarlane Laboratories) using a forward primer (5'- 
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GGAATTCCATATGCGTATTTTGTTTGTAGGCCCGC-3') and a reverse primer (5'- 

GATCGAATTCGGCCCTTTCTGTACCATTGTGATCAGG -3') that resulted in the 

introduction of NdeI and EcoRI restriction sites (underlined) upstream and downstream of the 

iroB open reading frame, respectively. Amplification was performed using iProof DNA 

polymerase (Bio-Rad Laboratories) according to the protocol supplied by the manufacturer. 

After digestion of the PCR product and expression vector pET24b (Novagen) with NdeI and 

EcoRI, the insert was ligated into the vector under control of a T7 promoter in-frame with a C-

terminal hexahistidine affinity tag. The resulting vector, pET24b-iroB-CH6, was transformed 

into DH5α and identity was verified by DNA sequencing (Genome Quebec Innovation Centre, 

McGill University).  

 

Site-directed mutagenesis   

Site-directed mutagenesis of iroB was performed using the QuikChange Site-Directed 

Mutagenesis Kit (Stratagene) using pET24b-iroB-CH6 as a template along with a pair of custom-

synthesized mutagenic oligonucleotide primers for each mutant generated. The mutagenic 

oligonucleotides were designed to substitute the following IroB residues: (i) Trp264 to Leu 

(W264L): forward primer (5'-GTTCGCCTGGTTGACTTGATACCCATGGGTGTC-3'), reverse 

primer (5'- GACACCCATGGGTATCAAGTCAACCAGGCGAAC-3'); (ii) Glu67 to Ala 

(E67A): forward primer (5'- GTTACCGCCACCATGCGGCACAGCGGAAAAA-3'), reverse 

primer: 5'-TTTTTCCGCTGTGCCGCATGGTGGCGGTAAC-3'); (iii) Asp304 to Asn (D304N): 

forward primer (5'-GGCCAGGGAGCCAATCGCCCGGTAA-3'), reverse primer (5'- 

TTACCGGGCGATTGGCTCCCTGGCC-3'); (iv) His65 to Ala and His66 to Ala (H65A/H66A): 

forward primer (5'-CCGAAGCTGGTTACCGCGCCGCTGAGGCACAGCGGAAAA-3'), 
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reverse primer (5'-TTTTCCGCTGTGCCTCAGCGGCGCGGTAACCAGCTTCGG-3'). 

Mutagenesis reaction mixtures (50 µl) contained: pET24b-IroB-CH6 template DNA (~ 2 µg/µl), 

mutagenic forward and reverse primers (0.5 µM each),  dNTP mixture (0.2 mM each of dATP, 

dTTP, dCTP, and dGTP), and PfuTurbo DNA polymerase (0.05 U/µl). The number, duration, 

and temperature of the PCR cycles were performed according to the manufacturer's instructions. 

Prior to transformation into DH5α, parental vectors were digested with DpnI. Double-stranded 

plasmids obtained from site directed mutagenesis were purified and variant identities were 

verified by DNA sequencing (Genome Quebec Innovation Centre, McGill University).  

 

Expression and purification of IroB-CH6 and variant proteins    

Expression constructs (pET24b-IroB-CH6) containing DNA sequences encoding in-frame C-

terminal hexahistidine-tagged wild-type IroB (henceforth referred to as IroB-CH6) or IroB-CH6 

variants (W264L, E67A, D304N, H65A/H66A) were transformed into competent E. coli BL21-

DE3 cells (Novagen). Transformants were grown in 2xYT broth containing 30 µg/ml of 

kanamycin at 37 °C to an OD600 of ~0.6. Protein expression was induced with the addition of 

IPTG to a final concentration of 0.4 mM followed by further incubation in a platform shaker 

(220 RPM) at 20 oC for 20 hours. Cells were pelleted by centrifugation (6,000 g) and stored at -

20 oC until required. For purification, cell pellets from 1 L culture were resuspended in 30 ml 

ice-cold Buffer A (20 mM Tris (pH 8.5), 500 mM NaCl, 20 mM imidazole, 500 mM sucrose, 2 

mM TCEP) supplemented with Protease Inhibitor Cocktail (BioShop, Inc.). Cell lysis was 

achieved after three passes in a French pressure cell operated at 16,000 to 18,000 lb in-2. Cell 

lysates were kept cold during this procedure. Insoluble matter and cell debris were removed by 

ultracentrifugation at 130,000 g for 1 h at 4 °C. Clarified lysates were applied to a 10 ml Ni-NTA 
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Superflow (Qiagen) column (pre-equilibrated with Buffer A) connected to a BioLogic DuoFlow 

FPLC system (Bio-Rad Laboratories). The column was extensively washed using Buffer B (20 

mM Tris (pH 8.5), 25 mM KCl, 40 mM imidazole, 1M sucrose, and 1 mM TCEP). The washed 

hexahistidine-tagged proteins were eluted using a stepwise imidazole gradient (40 mM to 250 

mM) in Buffer B. Fractions containing the highest OD280 values were analyzed by SDS-PAGE, 

pooled, and dialyzed against Buffer C (20 mM Tris (pH 8.5), 25 mM KCl, 1M sucrose, 1 mM 

TCEP) followed by storage at -80 °C after direct beading into liquid nitrogen. Protein 

concentrations in this study were determined spectrophotometrically by measuring OD280 and 

using molar extinction coefficients predicted from primary amino acid sequences (ε280 = 56,000 

M-1 cm-1 for IroB-CH6, D304N, E67A, H65A/H66A; ε280 = 50,500 M-1 cm-1 for W264L). 

 

Circular dichroism spectroscopy    

Far-UV CD spectra of purified IroB-CH6 and variant protein samples were collected on a Jasco 

J-815 circular dichroism spectropolarimeter. Purified proteins were dialyzed into Buffer C and 

then diluted to a concentration of 4.7 µM in the same buffer. Diluted samples were loaded into a 

rectangular cell with 0.1 cm path length and spectra were recorded at 20 °C by averaging five 

wavelength scans (1 nm bandwidth) from 260 nm to 200 nm (step size: 0.2-nm, scan rate: 20 

nm/min). Spectra were corrected for buffer contributions, smoothed and signals were converted 

to molar ellipticities using the instrument software package. Final spectra were exported and 

plotted using OriginLab (version 8.6). 

 For thermal stability experiments, ellipticities at 222 nm were monitored between 20 oC 

and 98 oC (rate of temperature change: 0.5 oC min-1) using a Jasco J-815 CD spectropolarimeter 

with a temperature-controlled cell holder. Thermal denaturation data were normalized in terms of 
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fraction of folded protein at each temperature value by assigning the ellipticity value at 20 °C to 

100% folded (fraction folded = 1) and the value at 60 °C to 100% unfolded (fraction folded = 0). 

The melting temperature (Tm) was determined from thermal denaturation curves by using the 

first derivative function of the instrument’s software package, where maxima between 20 °C and 

60 °C was used to determine Tm values. All CD spectra of protein solutions were corrected for 

contributions of buffer components using spectra collected in the absence of protein. 

 

Fluorescence spectroscopy  

Fluorescence spectroscopy was used to assess the tertiary structure of purified IroB-CH6 and 

variants. Spectra were recorded at room temperature using a Varian Cary Eclipse 

spectrofluorometer with the Varian Scan program (version 1.1). For fluorescence experiments, 

protein concentrations were diluted to avoid inner filter effects such that OD280 values were 

always below 0.05. Purified IroB-CH6 and variant protein concentrations were adjusted to 1 µM 

in Buffer A. Samples were loaded into a 1 cm Varian fluorescence cuvette, and fluorescence 

emission spectra were collected from 300 to 400 nm using excitation wavelengths of 280 nm or 

295 nm. All spectra were recorded in CAT mode (reported spectra are averages of 10 scans 

each), excitation and emission slit width were set to 5 nm, the voltage and scan speed adjusted to 

600 V and 600 nm min-1, respectively. Spectra were corrected for buffer contribution by 

subtraction of signal from spectra collected on protein-free samples using the instrument’s 

calculation software. Scan data were exported and analyzed using OriginLab.   

IroB-CH6 activity assay 

The HPLC-based IroB activity assay used in this study was adapted from Fischbach et al.9  IroB-

CH6 and variant proteins were exchanged into Buffer D (75 mM HEPES (pH 7.5), 50% glycerol 
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(v/v), 2.5 mM TCEP) using a DG10 desalting column, and concentrations of exchanged proteins 

were determined spectrophotometrically at 280 nm using molar extinction coefficients predicted 

from primary amino acid sequences. Enzymatic reactions were performed in a 100 µl volume 

containing 2 µM IroB-CH6 or variant protein, 100 µM enterobactin (Sigma), 600 µM UDP-

glucose (Sigma), in Buffer E (75 mM Tris (pH 7.5), 5 mM MgCl2, 2.5 mM TCEP). Reactions 

were allowed to proceed for 60 minutes at 25 oC, followed by immediate quenching upon 

loading onto a reversed-phase C18 column equilibrated with 5% ACN (v/v) in dH2O and 

connected to an Agilent HPLC (flow rate: 1 ml min-1). After sample loading, unbound material 

was washed away for 10 min in 5% (v/v) ACN in dH2O. Reaction products were monitored at 

254 nm and separated in a gradient from 5-80% (v/v) ACN in 0.05% (v/v) TFA in dH2O over 20 

min. Assays were performed in duplicate. Chromatograms were exported and plotted using 

OriginLab software. Reactants and products (enterobactin, MGE, DGE, TGE) separated by RP-

HPLC were analyzed by ESI mass spectrometry at the Centre for Biological Applications of 

Mass Spectrometry (Concordia University). Eluted species were directly injected into a CapLC-

QToF2 mass spectrometer (Waters Micromass) and masses were analyzed in the positive mode.  

 

Fluorescence-based enterobactin-binding assay 

A fluorescence-based enterobactin-binding assay modified from Lin et al.17  was used to estimate 

binding affinity constants for enterobactin binding to IroB-CH6 and variant proteins. Purified 

proteins were thawed and rapidly diluted to a concentration of 100 nM into Buffer F (75 mM 

Hepes (pH 7.5), 5 mM MgCl2, 2.5 mM TCEP) in a Varian fluorescence cuvette (path length = 

1cm). Fluorescence emission at 340 nm was recorded at 20 oC using the simple read mode upon 

excitation at 280 nm. Excitation and emission slit widths were set to 10 nm, and detector voltage 

(
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was set to 600 V. Enterobactin (3 mM in DMSO) was added to final concentrations of 2, 4, 6, 8, 

and 10 µM, followed by rapid mixing and equilibration for 30 sec. Fluorescence emission 

intensities at 340 nm were measured and corrected for buffer and DMSO contributions. 

Fluorescence intensities were corrected for inner filter effects according to the equation:  

    Fcorr = Fobs x 10((ODex+ODem)/2)      (1) 

where Fobs is the observed fluorescence intensity, ODex is the observed absorbance at the 

excitation wavelength, ODem is the observed absorbance at the emission wavelength.  

The ratio of initial fluorescence intensities to fluorescence intensities at given enterobactin 

concentrations were plotted as a function of enterobactin concentration according to the Stern-

Volmer18 equation:  

    F0/F = 1 + KSV [ENT]      (2) 

where F0 is the corrected fluorescence emission intensity at 340 nm of the protein in the absence 

of enterobactin, F is the corrected fluorescence emission intensity at 340 nm in the presence of 

enterobactin, KSV is the Stern-Volmer constant, and [ENT] is the molar concentration of 

enterobactin. Quenching experiments were performed in triplicate for each protein. Data 

obtained from fluorescence quenching experiments were imported into Kaleidagraph 4.5 and fits 

were obtained by linear regression. Slopes of linear fits were used to determine KSV values. 

 

Results 

Homology modeling of E. coli IroB reveals candidate residues involved in catalysis 

In order to locate the IroB active site in the absence of structural data, we used homology 

modeling to predict the three-dimensional structure of the protein. We identified crystallized 

orthologues as candidate templates for homology modeling via the PDB search function of the 
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FFAS03 server.12  Our FFAS03 search reported the C-glycosyltransferase UrdGT2 (PDB code: 

2P6P)19  and the C-glycosyltransferase SsfS6 from Streptomyces sp. (PDB code: 4G2T)20 as the 

C-GT orthologues with the highest degree of structural alignment. We therefore used 2P6P and 

4G2T as templates for homology modeling using Modeller v9.13 and obtained an IroB model 

that superimposed well with the structures of 2P6P and 4G2T (superposition RMSD values:  

1.00 Å and 0.593  Å, respectively) (Fig. 3a). Evaluation by PROCHECK15  and ProSA-Web14  

indicated that the model was of acceptable quality and stereochemically correct. The predicted 

structure of our IroB homology model (Fig. 3b) exhibits a two-domain GT-B fold characteristic 

of C-glycosyltransferases of known structure.19,20  The N- and C-terminal domains of the model 

possess a similar architecture with central β-sheets sandwiched by α-helices, and are connected 

by a linker region between residues 185 and 197. The C-terminal domain is typical of a 

Rossmann fold for binding nucleotide cofactors, and likely comprises the UDP-glucose binding 

site of IroB. In order to gain further insights into the substrate-binding regions of IroB, we 

compared our model to the O-glycosyltransferase CalG1 from Micromonospora echinospora 

(PDB code: 3OTH), which was co-crystallized with a bound TDP nucleotide cofactor. The 

CalG1 primary structure aligned to that of E. coli IroB with an overall sequence identity of 28% 

(Fig. S1). The crystal structure of CalG1 exhibits a two-domain GT-B fold with a Rossmann-like 

C-terminal domain, similar to our predicted IroB structure.21 The 3OTH structure is comprised of 

CalG1 in complex with TDP, a nucleotide cofactor that shares chemical similarities with UDP-

glucose. We superimposed our IroB model structure onto that of the CalG1-TDP complex in 

order to locate the UDP-glucose binding site in IroB. LSQMAN superposition of the C-terminal 

domain of our IroB model onto that of the CalG1 structure resulted in an overall RMSD of 1.547 

Å and a normalized RMSD(100) of 0.987 Å. Part of the TDP-binding region of CalG1 between 
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279-WVPQ-282 was found to structurally align with IroB residues 264-WIPM-267 (Fig. 3c). In 

the CalG1 structure, residue W279 is involved in a stacking interaction with the thymidine base 

of TDP. IroB residue W264 superimposes with CalG1 W279, suggesting that W264 can form a 

similar stacking interaction with the uridine base of UDP-glucose. Given the predicted position 

of the binding site for UDP-glucose in our IroB model, we were able to infer the location of the 

acceptor-binding site, which would be proximal to the glucose moiety of UDP-glucose, at the 

cleft between the N- and C-terminal domains. IroB residue D304 is found at this cleft in our 

model, at a position that suggests a possible role in stabilizing the glucose moiety of the 

nucleotide cofactor. Our model also indicated the presence of a hydrophobic cluster near D304, 

consisting of IroB residues L10, L13, and L110 (not shown in Fig. 3), that could be involved in a 

hydrophobic interaction with the bound acceptor. Near this hydrophobic cluster, we found a long 

loop between residues 56-69 that could potentially close over the predicted acceptor-binding site. 

Possible catalytic residues on this loop that could participate in deprotonation of acceptor DHB 

moieties were identified: H65, H66 and E67. These three residues, as well as the predicted UDP-

glucose-binding residues D304 and W264, were changed by site-directed mutagenesis to gain 

insights into their roles in IroB catalysis and substrate binding. Three of the five residues were 

altered to produce single-site IroB variant proteins: E67A, W264L, D304N. The histidine 

residues at positions 65 and 66 were changed to produce a double-site IroB variant protein: 

H65A/H66A.  

 

Expression and purification of IroB-CH6 and variant proteins   

We initially attempted to purify IroB-CH6 according to a previously reported approach9, which 

led to heavy IroB-CH6 precipitation at higher concentrations. We were able to optimize IroB-
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CH6 solubility and structural integrity by the addition of the following stabilizing osmolytes 

(with final concentrations following in parentheses): glycerol (30-50% (v/v)), sucrose (1 M), or 

trehalose (1 M). Under these conditions, no visible precipitation of IroB was observed up to a 

concentration of 3 mg ml-1.  Far-UV circular dichroism spectroscopy (not shown) of IroB 

solutions indicated that the presence of any of these osmolytes resulted in enhanced long-term 

stability and solubility of IroB-CH6. Our final purification protocol yielded approximately 20 mg 

of recombinant IroB-CH6 per liter of culture, and this optimized protocol was also used to purify 

the IroB-CH6 variants that we generated. Purities of IroB-CH6 and variant preparations were 

found to be comparable, and were estimated to be ≥85% based on densitometry following SDS-

PAGE (not shown).  

 

Structural integrity of IroB-CH6 and variant proteins 

To assess overall protein fold qualities, we examined our purified IroB-CH6 and variant proteins 

using several biophysical methods that are sensitive to secondary structure (far-UV circular 

dichroism (CD)), overall stability (thermal denaturation measured by far-UV CD) and tertiary 

structure (fluorescence spectroscopy). Our far-UV CD analyses (Fig. 4a) indicate that IroB-CH6 

and variant proteins were folded with similar secondary structure contents. The spectrum of 

IroB-CH6 (WT) (Fig. 4a, black line) has a positive peak at around 200 nm and double minima 

indicative of alpha-helical content at 208 nm and 222 nm, with the minimum at 222 nm being 

more prominent. Spectra of all IroB variant proteins exhibited similar characteristics in 

comparison with the IroB-CH6 spectrum, with minor variations observed in the 208-222 nm 

region. The variant D304N (Fig. 4a, magenta line) possesses a slightly more pronounced 

minimum at 208 nm compared to its 222-nm minimum.  
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 Thermal denaturation experiments were performed to compare the overall thermal 

stabilities of variant proteins to that of IroB-CH6. Thermal denaturation curves (Fig. 4b) showed 

maximal spectral transitions around 35 °C - 39 °C, followed by a stable minimal ellipticity signal 

at 60 °C. Additional ramping of temperature from 60 oC to 85 °C did not further alter this signal, 

so we concluded that maximal denaturation of all proteins occurred by 60 oC. The transition mid-

point of wild-type IroB (black line) occurred around 39 °C. To determine transition mid-points, 

first derivatives of the melting curves were calculated where the maximum of the first derivative 

was taken as the melting temperature (Tm). These results are summarized in Table 1, which 

shows that all Tm values are similar to the wild-type Tm of 39.4 °C, with the H65A/H66A double 

variant having the lowest Tm at 35.2 oC.  We therefore concluded that the overall folds of the 

four variant proteins examined were not adversely affected in comparison with the wild-type 

protein.  

 

Fluorescence emission spectra 

Fluorescence spectroscopy was used to further probe the tertiary structures of IroB-CH6 and 

variant proteins. The fluorescence emission spectra of wild-type IroB-CH6 upon excitation at 

280 nm (Fig. 5a, black dashed trace) and 295 nm (Fig. 5a, black solid trace) exhibited emission 

maxima at 345 nm, suggesting that at least some of the eight tryptophan residues in wild-type 

IroB-CH6 are found in a polar environment, and are likely solvent-exposed. The fluorescence 

emission spectra (dashed traces: λex = 280 nm; solid traces: λex = 295 nm) of the IroB variants 

D304N (Fig. 5a, magenta traces), E67A (Fig. 5a, red traces) and H65A/H66A (Fig. 5a, green 

traces) all superimpose with those of IroB-CH6. In contrast, peaks of the fluorescence emission 
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spectra of W264L (Fig. 5b, blue traces) exhibited a blue shift relative to those of IroB-CH6 (Fig. 

5b, black traces), consistent with W264 occurring in a more polar environment.  

 

Enzymatic activities of IroB-CH6 and variant proteins 

Based on our homology modelling and bioinformatics analyses, we predicted that IroB residues 

H65, H66, and E67 could potentially function as catalytic residues involved in deprotonation, 

while D304 and W264 could potentially be involved in UDP-glucose binding. We therefore 

incubated wild-type IroB-CH6 and our four variant proteins under identical assay conditions to 

compare levels of enzymatic activities. Under these conditions, we expected the wild-type 

enzyme to completely convert enterobactin predominantly to DGE, which has been shown to be 

the predominant biological product.5  We employed an HPLC-based activity assay modified from 

Fischbach et al.9  to measure the relative activities of IroB-CH6 and variant proteins. Reactant 

and product (enterobactin, MGE, DGE, TGE) identities were confirmed by inline ESI-MS 

analysis of eluted species from a quenched IroB-CH6 reaction mixture separated by RP-HPLC. 

Good correspondences (within 0.5 Da) were observed between expected and observed masses 

for all species, thus confirming their identities (Table 2). Chromatographic traces of IroB-CH6 

and variant assay reactions quenched at 60 min are shown in Figure 6, where the relative 

abundances of reactants and products were calculated by integration of areas and shown above 

respective chromatographic peaks. As expected, wild-type IroB-CH6 converted 100% of the 

enterobactin substrate to DGE (88%) and TGE (12%) after 60 min (Fig. 6a). W264L, which our 

model predicted to stack with the uridine base of the UDP-glucose donor, was only able to 

convert 55% of total enterobactin substrate to MGE (45%) and DGE (10%) (Fig. 6b). The 

D304N variant, which we predicted to be proximal to the enterobactin-binding site and the 
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glucose moiety of UDP-glucose, was found to be completely inactive in our assay (Fig. 6c). The 

variant E67A, which our model predicted to be located on a loop near the enterobactin-binding 

site, was able to partially convert enterobactin to MGE (29%), leaving 71% of the substrate 

unconverted (Fig. 6d). Finally, we found the double variant H65A/H66A to be active, converting 

92% of enterobactin to glycosylated products; however, in contrast to IroB-CH6, the double 

variant produced more MGE (60%) than DGE (32%) (Fig 6e).  

 

Enterobactin binds to IroB variants 

IroB variants W264L, D304N, E67A and H65A/H66A exhibited partial or complete loss of 

enzymatic activity with respect to enterobactin conversion. We therefore wanted to determine if 

the observed decreases in activities were due to an inability of the variants to bind the substrate 

enterobactin. Enterobactin has been previously shown to statically quench IroB intrinsic 

fluorescence upon binding, such that the quenching effect can be used to measure enterobactin 

binding to IroB.17 Here we titrated IroB-CH6 and variant proteins with pure enterobactin up to a 

concentration of 10 µM. Over this concentration range, increases in Fo/F as a function of 

[enterobactin] were observed to be linear. Quenching data were fit by linear regression, with R2 

values of 0.988 or better being obtained in each case. For static quenching systems, such as the 

binding of enterobactin to IroB, the slope of the linear fit (i.e., the Stern-Volmer constant (KSV)) 

correlates with quencher binding affinity.18 Using this approach, we found that IroB-CH6 and all 

variant proteins were able to bind enterobactin with affinities within 2.5-fold of IroB-CH6 (Fig. 

7). Binding of enterobactin to wild-type IroB-CH6 resulted in a KSV value of 0.16 µM-1 (Fig. 7a). 

The variants W264A and D304N, residues that we predict to be involved in UDP-glucose 

binding, were found to have the lowest KSV values, and thus the lowest affinities: 0.080 µM-1 and 
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0.069 µM-1, respectively (Fig. 7b-c). The variants E67A and H65A/H66A, predicted to be on a 

mobile loop that closes over the IroB active site, were found to bind enterobactin with affinities 

(KSV = 0.14 µM-1 and 0.12 µM-1, respectively) similar to IroB-CH6 (Fig 7d-e). 

 

Discussion 

The enterobactin-modifying enzyme IroB from E. coli belongs to a relatively rare class of 

glycosyltransferases that attach glucose moieties to acceptor molecules via formation of C-C 

bonds. Previous studies on IroB have shown that it catalyzes the formation of MGE followed by 

conversion of MGE to DGE, with relatively little TGE being produced in vivo.5,9 Little is 

currently known about the mechanism of this enzyme, including knowledge of specific residues 

involved in substrate binding and catalysis. This lack of data may be in part due to the difficult 

nature of isolating this protein under conditions optimal for in vitro studies. Our expression and 

purification of recombinant IroB-CH6 was initially hampered by its tendency to partition in the 

insoluble phase upon centrifugation of cell lysates, and to precipitate above ~0.3 mg ml-1 during 

purification. We found that IroB-CH6 solubility and conformational stability were greatly 

improved in the presence of a number of different osmolytes, including glycerol, trehalose, and 

sucrose. Since we found that these osmolytes enhanced the folded state of the protein, we used 

sucrose (0.5-1.0 M) or relatively high concentrations of glycerol (~ 50%) to assist in stabilizing 

purified IroB-CH6 and variant proteins in vitro.  

 Such difficulties inherent in the handling of IroB in vitro may be informative of the 

protein's intracellular context. For example, our homology model indicates a region of high 

surface hydrophobicity around Val 49 that is surrounded by basic residues, suggesting that IroB 

may associate with the E. coli inner membrane via hydrophobic and electrostatic interactions. 



 21 

This is not unprecedented. The E. coli O-glycosyltransferase MurG, for example, is involved in 

peptidoglycan biosynthesis and has been shown to associate with the inner membrane by a 

surface hydrophobic region surrounded by basic residues.22 Glycosylated enterobactin (GE) may 

similarly be directly exported from the cytoplasm via direct interaction between a membrane-

anchored IroB and the IroC transporter. Furthermore, the relatively low in vitro thermostability 

of IroB-CH6 that we found in our melting experiments (Tm ~ 39 oC) suggests that an important 

intracellular stabilizer of IroB may be removed upon purification of the protein. It has been 

reported that E. coli enterobactin biosynthetic enzymes such as EntC and EntF have enhanced 

activities in the presence of macromolecular crowding agents such as Ficoll, a sucrose polymer, 

suggesting that these proteins are responsive to the physiological environment of the 

cytoplasm.23,24  Perhaps proteins of the functionally-related iroA cluster, such as IroB, are 

similarly responsive to their intracellular contexts. We are now further exploring this possibility. 

 In order to find IroB catalytic residues, given that no structure of E. coli IroB has been 

reported, we constructed a homology model of IroB by using two recently solved bacterial C-

glycosyltransferase structures as templates: UrdGT2 from S. fradiae (PDB code: 2P6P), and 

SsfS6 from Streptomyces sp. (PDB code: 4G2T). Although IroB has only ~ 25% identity to each 

template structure, our use of two structural templates in the modeling of IroB, coupled by 

rigorous model evaluation using various scoring algorithms, led us to conclude that our model 

had acceptable accuracy. Superposition of our IroB model with the M. echinospora O-

glycosyltransferase CalG1 (PDB code: 3OTH) allowed us to locate the UDP-glucose (donor) 

binding site, which in turn provided us with valuable information regarding IroB residues likely 

at the enterobactin/MGE/DGE (acceptor) binding site. At the predicted donor-binding site, we 

found IroB residue W264 to be structurally conserved with CalG1 W279, which forms a stacking 
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interaction with the thymidine base of co-crystallized TDP in the 3OTH structure. We therefore 

hypothesized that IroB W264 was involved in stabilization of the uridine base of UDP-glucose. 

In support of this, our fluorescence spectroscopy experiments revealed a blue shift in the W264L 

emission maximum compared to wild-type IroB, suggesting that W264 is solvent-exposed, 

consistent with its predicted location at the surface of the UDP-glucose binding site. Our W264L 

variant exhibited reduced (45%) activity compared to IroB-CH6 even though our biophysical 

characterizations indicated that this variant was well folded and could bind enterobactin with 

wild-type affinity. Taken together, these data support the hypothesized role of W264 in 

binding/positioning UDP-glucose as predicted by our homology model, thus contributing to 

validation of our IroB model.  

 Based on the assumption that IroB W264 is involved in UDP-glucose binding, we 

followed the orientation of the superimposed TDP cofactor from 3OTH in order to gain insights 

into the binding site of the acceptor molecule. Proximal to the predicted glucose moiety of UDP-

glucose lies IroB residue D304, which is located at the cleft of the N- and C-terminal domains. 

Given its location, D304 could participate in coordinating the glucose moiety of UDP-glucose, or 

it could participate in proton abstraction from a DHB group on the bound acceptor. Many 

structures of glycosyltransferase enzymes have been reported to have a catalytic aspartate residue 

at the interdomain cleft of the GT fold, with the aspartate participating in a catalytic dyad with a 

nearby histidine residue.21 Our IroB model indicates the presence of H138 within hydrogen-

bonding distance of D304, but an H138A variant that we generated retained full enzymatic 

activity (data not shown). Furthermore, the UrdGT2 catalytic dyad comprised of Asp 137 and the 

backbone amide of Val139 is located within the UrdGT2 interdomain cleft, but the Cβ-Cβ 

distance between IroB D304 and UrdGT2 D137 in the superimposed structures is 8.86 Å, 
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demonstrating that these residues are therefore not at structurally-conserved positions. To 

investigate a possible role for D304 in IroB catalysis, we changed this residue to asparagine. We 

observed that the D304N variant had no detectable activity under our assay conditions, even 

though D304N was found to be well folded and could bind enterobactin. It is therefore likely that 

the role of IroB D304 is in stabilizing the glucose moiety of UDP-glucose during catalysis. In 

support of this, Offen et al. demonstrated that D374 in the O-glycosyltransferase VvGT1 (PDB 

code: 2C1Z) from Vitis vinifera is involved in coordinating the glucose moiety of the sugar 

donor by hydrogen bonding to 3-OH and 4-OH of glucose via the D374 carboxyl group.25  The 

D374A mutation in VvGT1 reduced catalytic activity to a non-detectable level, consistent with 

what we observed in our IroB D304N variant activity assay. Amino acid sequence alignment of 

VvGT1 with IroB shows that VvGT1 D374 and IroB D304 share a position of sequence identity 

(Fig. S1). We therefore propose that D304 is involved in the orientation of the glucose moiety of 

UDP-glucose rather than in acceptor deprotonation. To investigate this further, we are currently 

working towards optimizing our purification and IroB stabilization methods to allow for higher 

protein concentrations that would facilitate direct calorimetric binding assays of UDP-glucose to 

IroB-CH6 in comparison with the W264L and D304N variants.  

 If D304 is indeed positioned to stabilize glucose, then our model predicts that IroB E67 

would likely be a base catalyst participating in deprotonation of DHB groups on the bound 

acceptor. In our model, E67 is located on a loop between IroB residues 56 and 69. This region of 

IroB is not conserved among GT orthologues (Fig. S1), providing support that E67 is indeed 

found in a loop. The lack of sequence conservation is also consistent with its proposed role in 

acceptor molecule interaction, given the heterogeneity of GT acceptor molecules. Based on its 

position in our IroB model relative to the predicted acceptor-binding site, we hypothesize that the 
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56-69 loop containing E67 is mobile, being able to close over the acceptor molecule upon its 

binding. Prior experimental data reported on similar enzymes support a catalytic role for such a 

loop in IroB. Hoffmeister and coworkers identified a region between residues 52 and 82 that 

confers substrate specificity for the conserved C-glycosyltransferases UrdGT1b and UrdgGT1c. 

26,27 Furthermore, the UrdGT2 structure (PDB code: 2P6P) revealed a structurally conserved loop 

comprised of UrdGT2 residues 62-72 that is adjacent to the acceptor-binding site. This loop has 

been proposed to close over the acceptor molecule upon binding so that a base catalyst (either 

UrdGT2 E66 or E71) could fulfill its function.19  Similar to the position of UrdGT2 E71, the 

location of IroB E67 in a predicted mobile loop in our model supports its role as a base catalyst 

in the deprotonation of bound acceptor. We found that mutation of E67 to alanine had a severe 

impact on IroB catalysis: 70% of enterobactin substrate remained unconverted, and only MGE 

could be produced. As with D304N, we found the E67A variant to be properly folded and it 

could bind to enterobactin with wild-type affinity. This demonstrates that the E67A mutation 

exclusively affects catalytic function. Fischbach et al. reported that the IroB mechanism is 

distributive, with accumulation of MGE followed by subsequent accumulation of DGE, and then 

finally of TGE. This study further suggested that carbanion formation at the C5 of the acceptor 

DHB moiety, where C-glucosylation occurs, requires prior deprotonation of the DHB C2-OH 

group, which is para to C5.9  Residue E67 may be involved in deprotonation at the DHB C2-OH 

position since the Cβ-Cβ distance between E67 and D304 is 10.9 Å, with sufficient intervening 

space for a DHB moiety to be situated with its C2 atom closer to E67 and its C5 atom closer to 

D304. Contiguous to IroB E67 are the residues H65 and H66, also on the predicted mobile loop 

in our model. We generated the double variant H65A/H66A to test the roles of these residues in 

IroB catalysis. The impact of these mutations on catalytic activity was moderate in comparison 
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to E67A: the H65A/H66A variant is still able to produce MGE (60%) and DGE (32%) upon 

converting ~ 90% of the enterobactin substrate. Given these data, and the positions of H65 and 

H66 in our homology model, these residues could be involved in stabilizing E67 in a 

deprotonated state, or perhaps enhancing the catalytic function of E67 by formation of H-bonds 

with other IroB residues upon loop closure. Furthermore, since E67A retained partial activity, it 

is possible that the nearby H65 residue, which also has its side chain oriented toward the 

predicted acceptor-binding site, could substitute as a less efficient base catalyst for DHB 

deprotonation in the absence of E67.  

 In support of our proposed roles for IroB residues W264, D304, H65, and H66, and E67, 

we determined that variant proteins with mutations at these positions could all bind enterobactin 

(Fig. 7). We found that the poorest binders of enterobactin, W264L and D304N, had affinities 

that were approximately 2.5-fold lower than that of IroB-CH6. Interestingly, these are the two 

residues that we propose to be involved in binding UDP-glucose. It is possible that W264 and 

D304 may also directly interact with the enterobactin acceptor, especially D304 given its 

predicted location at the interdomain cleft.  However, it is also possible that subtle 

conformational rearrangements caused by the W264L and D304N mutations at the UDP-

glucose-binding site are linked to conformational rearrangements at the enterobactin-binding 

site, resulting in the lower observed acceptor-binding affinity. We are now further investigating 

possible conformational linkage between IroB donor and acceptor binding sites. In any event, the 

extent of quenching that we observed for IroB-CH6 is consistent with the previously reported KD 

for enterobactin binding to IroB (2.3 µM).17  Since the concentration of enterobactin used in our 

activity assays was 100 µM, a saturating concentration given our experimentally-determined 

enterobactin-binding data, the losses of enzymatic activities that we observed for our IroB 



 26 

variants (which all had KSV values within ~2.5-fold of IroB-CH6) were not due to lowered 

affinities for enterobactin binding.   

 In conclusion, we have identified three residues as being necessary for efficient IroB 

catalysis: E67, W264, and D304 (Fig. 8). Mutations at these positions negatively affected 

enzymatic activities, but these losses of activity were not due to protein misfolding, nor to 

impaired enterobactin binding. Taken together, our homology model and experimental data 

indicate that E67 is likely involved in acceptor (enterobactin/MGE/DGE) deprotonation at the 

phenolic group on the C2 carbon of the DHB moiety para to the site of glucose attachment at 

C5, while W264 and D304 are likely involved in donor (UDP-glucose) orientation to facilitate 

IroB catalysis.  
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Table 1. Thermal stabilities of IroB-CH6 and variant proteins. 

 Protein  Tm (oC)a  
 IroB-CH6  39.4  
 W264L  39.6  
 E67A 

D304N 
 39.6 

37.2 
 

 H65A/H66A  35.2  
a Tm values were determined as the peak of the first derivative of thermal  
denaturation curves collected between 20 oC and 60 oC. 
  



 32 

 
 
 
Table 2. LC-MS analysis of IroB-CH6 assay species eluted by RP-HPLC. 

Compounda 
Expected Mass 
([M+H+] in Da) 

Observed Mass 
([M+H+] in Da) 

ENT 670.6 670.2 
MGE 832.7 832.3 

DGE 994.8 994.4 
TGE 1156.9 1156.4 

a ENT=enterobactin, MGE=mono-glucosylated enterobactin,  
DGE=di-glucosylated enterobactin, TGE=tri-glucosylated enterobactin. 
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Figure Legends 
 
Fig. 1.  Chemical structures of enterobactin and IroB enzymatic products. (a) enterobactin; 

(b) MGE: monoglucosylated enterobactin; (c) DGE: diglucosylated enterobactin; (d) TGE: 

triglucosylated enterobactin. 

 

Fig. 2.  Multiple alignment of E. coli IroB to C-glycosyltransferases of known structure. 

4G2T: SsfS6 from Streptomyces sp., 2P6P: UrdGT2 from Streptomyces fradiae. Pairwise 

structure-based alignments of each protein sequence to that of IroB were initially obtained from 

the FFAS03 server and then combined to form the multiple alignment. Black background and 

white letters indicate positions of sequence identity; grey background and black letters indicate 

positions of sequence similarity. Alignment figure generated using BoxShade 

(http://ch.embnet.org/software/BOX_form.html). 

 

Fig. 3. Homology-based modelling of E. coli IroB and identification of possible catalytic 

residues. (a) Superposition of IroB homology model (red) onto template structures 2P6P (blue) 

and 4G2T (yellow). Protein mainchains shown as smooth ribbons; (b) IroB homology model 

shown in cartoon representation (coils: α-helices, flat arrows: β-sheets). Protein model is colored 

from N-terminus (blue) to C-terminus (red). Residues mutagenized in this study are indicated: 

lines point to positions of Cα atoms for each residue; (c) superposition of CalG1 (green) TDP-

binding site (PDB code: 3OTH) with predicted IroB (magenta) UDP-glucose binding site. Labels 

indicating residues and TDP ligand from CalG1 are terminated with a ' symbol. Carbonyl oxygen 

atoms are indicated by the suffix "-CO". 
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Fig. 4. Circular dichroism spectroscopy of IroB-CH6 and variant proteins. (a) Far-UV CD 

spectra of IroB-CH6 and variants: black: IroB-CH6, blue: W264L, red: E67A, magenta: D304N, 

green: H65A/H66A. Voltages are shown in inset using same color scheme. (b) Thermal 

denaturation curves of IroB-CH6 and variants: traces colored as in part (a). 

 

Fig. 5. Fluorescence emission spectra of IroB-CH6 and variant proteins. (a) Fluorescence 

emission scans (λex = 280 nm): dotted traces, fluorescence emission scans (λex = 295 nm): solid 

traces. Black: IroB-CH6, red: E67A, magenta: D304N, green: H65A/H66A; (b) Fluorescence 

emission scans (λex = 280 nm): dotted traces; fluorescence emission scans (λex = 295 nm): solid 

traces. Black: IroB-CH6, blue: W264L. 

 

Fig. 6. Enzymatic assays of IroB-CH6 and variant proteins. Assay mixtures were initiated 

with the addition of IroB-CH6 or variant protein (2.5 µM). All reactions proceeded for 60 min 

under identical assay conditions. Reactants and products were separated by RP-HPLC, and 

chromatographic traces are shown here. Reactant and product identities were assigned according 

to retention times in comparison with those of standard IroB-CH6 assay analyzed by LC-MS (see 

Table 2). Peak identities, determined by mass spectrometry, are labeled. Relative abundances 

determined by peak area integration are shown as percentages. (a) IroB-CH6; (b) W264L; (c) 

D304N; (d) E67A; (e) H65A/H66A. 

 

Fig. 7. Binding of enterobactin to IroB-CH6 and variant proteins. Stern-Volmer plots 

indicate loss of protein intrinsic fluorescence due to enterobactin binding. For each experiment, 

100 nM of protein was titrated with increasing concentrations of enterobactin. Samples were 
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excited at 280 nm and fluorescence emission was measured at 340 nm. F0/F = the ratio of protein 

fluorescence emission in the absence of enterobactin to protein fluorescence emission at the 

indicated enterobactin concentration. Solid lines represent fits of quenching data by linear 

regression. KSV = Stern-Volmer constant, corresponding to the slope of the linear fit. All binding 

experiments were performed in triplicate. Mean F0/F values are shown, and error bars represent 

standard deviations from the mean values. (a) IroB-CH6; (b) W264L; (c) D340N; (d) E67A; (e) 

H65A/H66A.  

 

Fig. 8. Schematic of IroB residues W264, D304, and E67 in relation to bound co-substrates. 

Approximate positions of IroB W264 (blue), D304 (magenta), E67 (red) are shown. Arrow 

indicates hypothesized role of deprotonation of DHB C2-OH by E67. Colored arcs are oriented 

towards regions of UDP-glucose that we propose interact with respectively colored residues.  

Specific moieties on co-substrates predicted to directly interact with W264, D340, and E67 are 

shaded with respective coloring. DHB C2 and C5 are labeled, along with C1' of glucose. 'R' 

indicates the remaining atoms of the bound acceptor (enterobactin/MGE/DGE) molecule. 

 

Fig. S1 Multiple sequence alignment of E. coli IroB to glycosyltransferase orthologues. 

Alignment generated using PSI-COFFEE (http://tcoffee.crg.cat/apps/tcoffee/do:psicoffee) and 

further processed with Jalview (http://www.jalview.org) . IroB orthologues detected by HHpred 

(http://toolkit.tuebingen.mpg.de/hhpred). Residues are shaded according to the degree of 

conservation from yellow to red. The conserved binding motif for the glycosyl donor is boxed in 

black. 2P6P: UrdGT2 from Streptomyces fradiae, 3IAA: CalG2 from Micromonospora 

echinospora, 2IYA: OleI from Streptomyces antibioticus, 3IA7: CalG4 from Micromonospora 
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echinospora, 3H4T: chimeric protein engineered from GtfA (Amycolatopsis orientalis) and Orf1 

(Actinoplanes teichomyceticus), 2IYF: OleD from Streptomyces antibioticus, 3OTH: CalG1 from 

Micromonospora echinospora,1RRV: GtfD from Amycolatopsis orientalis, 3OTI: CalG3 from 

Micromonospora echinospora, 3TSA: SpnG from Saccharopolyspora spinosa, 2C1Z: flavonoid 

glucosyltransferase from Vitis vinifera. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7.  
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Figure 8. 
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Figure S1. 
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Figure S1. (cont'd) 

 

 

 


