667 research outputs found

    The dark side of curvature

    Get PDF
    Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d_A(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega_k in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d_A(z) up to sufficiently high redshifts around z = 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)-Omega_k degeneracy.Comment: 18 pages, 9 figures. Minor changes, matches version accepted in JCA

    Summary report of MINSIS workshop in Madrid

    Full text link
    Recent developments on tau detection technologies and the construction of high intensity neutrino beams open the possibility of a high precision search for non-standard {\mu} - {\tau} flavour transition with neutrinos at short distances. The MINSIS - Main Injector Non-Standard Interaction Search- is a proposal under discussion to realize such precision measurement. This document contains the proceedings of the workshop which took place on 10-11 December 2009 in Madrid to discuss both the physics reach as well as the experimental requirements for this proposal.Comment: Proceedings of the MINSIS Workshop, Dec 10-11, 2009 in Madrid. 15 pages late

    Asymmetric Dark Matter and Dark Radiation

    Get PDF
    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.Comment: 22 pages, 5 figures, to be published in JCAP, minor changes to match version to be publishe

    Precision on leptonic mixing parameters at future neutrino oscillation experiments

    Get PDF
    We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta_{13} and the CP phase, delta, assuming that theta_{13} is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta_{13} and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta_{13} below 3% and an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure

    Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors

    Full text link
    We explore the physics potential of multi-megaton scale ice or water Cherenkov detectors with low (1\sim 1 GeV) threshold. Using some proposed characteristics of the PINGU detector setup we compute the distributions of events versus neutrino energy EνE_\nu and zenith angle θz\theta_z, and study their dependence on yet unknown neutrino parameters. The (Eνθz)(E_\nu - \theta_z) regions are identified where the distributions have the highest sensitivity to the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the maximal one and to the CP-phase. We evaluate significance of the measurements of the neutrino parameters and explore dependence of this significance on the accuracy of reconstruction of the neutrino energy and direction. The effect of degeneracy of the parameters on the sensitivities is also discussed. We estimate the characteristics of future detectors (energy and angle resolution, volume, etc.) required for establishing the neutrino mass hierarchy with high confidence level. We find that the hierarchy can be identified at 3σ3\sigma -- 10σ10\sigma level (depending on the reconstruction accuracies) after 5 years of PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte

    Light Sterile Neutrinos: A White Paper

    Get PDF
    This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data

    Multitasking Compensatory Saccadic Training Program for Hemianopia Patients: A New Approach With 3-Dimensional Real-World Objects

    Get PDF
    Producción CientíficaPurpose: To examinewhether a noncomputerized multitasking compensatory saccadic training program (MCSTP) for patients with hemianopia, based on a reading regimen and eight exercises that recreate everyday visuomotor activities using threedimensional (3D) real-world objects, improves the visual ability/function, quality of life (QL), and functional independence (FI). Methods: The 3D-MCSTP included four in-office visits and two customized homebased daily training sessions over 12weeks. A quasiexperimental, pretest/posttest study designwas carried out with an intervention group (IG) (n = 20) and a no-training group (NTG) (n = 20) matched for age, hemianopia type, and brain injury duration. Results: The groups were comparable for the main baseline variables and all participants (n = 40) completed the study. The IGmainly showed significant improvements in visual-processing speed (57.34% ± 19.28%; P < 0.0001) and visual attention/retention ability (26.67% ± 19.21%; P < 0.0001), which also were significantly greater (P < 0.05) than in the NTG. Moreover, the IG showed large effect sizes (Cohen’s d) in 75% of the totalQL and FI dimensions analyzed; in contrast to the NTGthat showed negligiblemean effect sizes in 96% of these dimensions. Conclusions: The customized 3D-MCSTP was associated with a satisfactory response in the IG for improving complex visual processing, QL, and FI. Translational Relevance: Neurovisual rehabilitation of patientswith hemianopia seems more efficient when programs combine in-office visits and customized home-based training sessions based on real objects and simulating real-life conditions, than no treatment or previously reported computer-screen approaches, probably because of better stimulation of patients´ motivation and visual-processing speed brain mechanisms

    Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design

    Get PDF
    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.National Institute of General Medical Sciences (U.S.) (Award R01 GM110048

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore