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Apartado de Correos 22085, E-46071 Valencia, Spain
dTheory Division, CERN,
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Abstract: We perform a comparison of the different future neutrino oscillation experi-

ments based on the achievable precision in the determination of the fundamental parameters

θ13 and the CP phase, δ, assuming that θ13 is in the range indicated by the recent Daya

Bay measurement. We study the non-trivial dependence of the error on δ on its true value.

When matter effects are small, the largest error is found at the points where CP violation

is maximal, and the smallest at the CP conserving points. The situation is different when

matter effects are sizable. As a result of this effect, the comparison of the physics reach

of different experiments on the basis of the CP discovery potential, as usually done, can

be misleading. We have compared various proposed super-beam, beta-beam and neutrino

factory setups on the basis of the relative precision of θ13 and the error on δ. Neutrino

factories, both high-energy or low-energy, outperform alternative beam technologies. An

ultimate precision on θ13 below 3% and an error on δ of ≤ 7◦ at 1σ (1 d.o.f.) can be

obtained at a neutrino factory.
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1 Introduction

The first results of Daya Bay [1] provide the first measurement of the angle θ13. The

T2K experiment had earlier published a ∼ 2.5σ hint of a non-vanishing angle [2], also

confirmed at a lesser statistical significance by the first results of Double Chooz [3] and by

the νe appearance measurement of MINOS [4]. Previous analyses had already hinted that

θ13 6= 0 could improve the χ2 of global fits, in particular the agreement between solar and

KamLAND data [5, 6].

The angle θ13 is a fundamental parameter of the Standard Model. As such, we would

like to measure it with as good precision as possible, and hopefully with the same precision

as its equivalent mixing angle in the quark sector. In fact, given the large hierarchy between

neutrino masses and the remaining fermion masses, it is of the utmost importance to test

the lepton flavour sector of the Standard Model, since it could unveil the mechanism of

neutrino mass generation and the explanation of this hierarchy. Furthermore, θ13 is also

the missing link to a new source of CP violation in the Standard Model. Leptonic CP

violation could have profound consequences in particle physics and cosmology, as it could

be related to the origin of the matter-antimatter asymmetry of the Universe [7].

In the last ten years, many different strategies have been put forward to measure θ13

and to discover leptonic CP violation in future experiments [8]. Improving the statistics

and reducing the background systematic errors of conventional neutrino beams would be

mandatory had θ13 turned out to be very small (θ13 . 3◦). These can be achieved with
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purer neutrino beams, such as those that could be produced in a neutrino factory [9–12] (i.e.

a muon storage ring) or in a beta-beam [13] (i.e. radioactive ion storage ring). However,

for values of θ13 as large as recent data indicates (θ13 ∼ 9◦) more intense conventional

neutrino beams may also have a good chance to perform these measurements. It is therefore

important to compare how these very different approaches will perform in the task.

In most previous studies, it has been common to compare the performance in terms

of the discovery potential for a non-vanishing θ13 or for CP violation, i.e. depicting the

areas of the parameter space in (θ13, δ) where θ13 could be distinguished from zero or δ

from CP-conserving values (0, π) at a given confidence level. In such comparisons, facilities

with more intense and purer beams outperform the others very significantly [14]. On the

other hand, for a largish θ13 it makes more sense to perform the comparison in terms of the

precision achievable on those parameters, since the discovery of the unknown parameters

is almost granted. This is the goal of the present paper.

We have considered most of the setups previously discussed in the literature, classifying

them according to three types of neutrino beams: conventional or super-beams, beta-beams

and neutrino factories. Among each class we compare different experiments that might

involve different average neutrino energies, different baselines and/or different detector

technologies. The comparison will be based on two quantities: the relative error on the

angle θ13 and the absolute error on the CP phase δ. We will show our results for values

of θ13 inside the 3σ region preferred by the recent Daya Bay results. We will assume

that, either each experiment will be able to distinguish the neutrino mass hierarchy by

itself, or that it can do it in combination with future atmospheric neutrino measurements

(particularly at its own detector [15, 16]) and/or with the present generation of neutrino

oscillation experiments [17–28] (T2K, MINOS, NOVA, INO, reactors).

The issue of precision on leptonic mixing parameters has been addressed in earlier

analyses of the performance of super-beams and neutrino factories. In particular, curves

of the error on δ as a function of δ, for fixed θ13, were first shown in refs. [29, 30]). In this

paper, we extend those studies in various ways. We identify the main features that explain

the striking dependence of ∆θ13 and ∆δ on the true values of the parameters, focusing on

the parameter range implied by Daya Bay result. We have also widened and updated the

range of experiments considered and performed a systematic comparison of their physics

performance on the basis of precision.

The structure of the paper is as follows: in section 2 we introduce our precision ob-

servables and briefly summarize the facilities that will enter in the comparison; section 3

contains a discussion on the dependence of the precision observables on the true values of

θ13 and δ in their presently allowed ranges; the numerical results of the comparison of the

different setups are summarized in section 4; we eventually conclude in section 5.

2 Observables and setups

2.1 Precision observables and simulation details

The goal of this paper is the study of the performances of several facilities in terms of the

attainable precision in the determination of the parameters θ13 and δ. The two observables

– 2 –



J
H
E
P
0
6
(
2
0
1
2
)
0
7
3

that we have considered are the relative error on θ13, ∆rθ13 ≡ ∆θ13/θ13, and the absolute

error on δ, ∆δ.

For a fixed value of the true parameters θ13 and δ, the absolute errors ∆θ13 and ∆δ are

defined as one half of the reconstructed 1σ range (1 d.o.f.) for the corresponding variable,

after marginalizing over all other oscillation and nuisance parameters.1 The χ2 has been

computed using the GLoBES 3.0 software [31, 32].

As we will see, the precision on θ13 and δ depends rather significantly on the true

values of the parameters θ13 and, especially, δ. For this reason, ∆rθ13 and ∆δ are shown as

functions of θ13 and δ respectively, not as single curves but, rather, as bands. For example,

the relative error on θ13 at a given true value of θ13 depends also on the true value of δ.

This weaker dependence is shown as an interval corresponding to varying δ in its full range.

The collection of these intervals as a function of θ13 forms what we call a precision band.

Similarly, the error in δ is shown at a given true value of δ with an interval that represents

the variation of this error on the other hidden variable, θ13. The range of true values is

taken to be the whole physical range for δ ∈ [−π, π], while we choose θ13 ∈ [5.7◦, 10◦], the

lower limit corresponding to the 3σ-range found by Daya Bay, while the upper bound is

instead stemming from previous global fits.

2.2 Setups

Regarding the facilities considered, many long-baseline experiments have been proposed

to complete the determination of the neutrino mixing parameters, measure the neutrino

hierarchy (when sufficiently long baselines are considered) and, hopefully, discover leptonic

CP violation. They fall in three main categories: conventional beams and/or super-beams,

beta-beams and neutrino factories.

Super-beams are very intense conventional neutrino beams produced from pion and

kaon decays. These beams are mostly composed of muon neutrinos or antineutrinos with an

unavoidable and non-negligible contamination from other flavours. The appearance of elec-

trons or positrons at a far detector provides a determination of the oscillation probability

Pµe, while the muon disappearance signal gives a precise determination of the atmospheric

parameters. Several super-beams have been proposed over the world in recent years. We

will present results for a subset of them: the LBNE proposal [33]; the SPL super-beam

from CERN to a water Čerenkov detector at Fréjus [16, 34–36]; a longer baseline op-

tion from CERN to a Liquid Argon detector placed at Pyhasälmi [37] (C2P); and the

T2HK proposal [38–40]. Note that our simulation of the T2HK setup follows the origi-

nal proposal [38, 39]. The more recent LOI [40] describes a setup with a beam of lower

power but a slightly more massive detector and modified fluxes, efficiencies and systemat-

ics. We find that, despite the modifications in the more recent setup, the performance of

the newer version of the facility in ref. [40] is in rough agreement with our simulation of

the original proposal.

1Note that, only if the confidence region is symmetric around the best fit, do the upper and lower error

bars coincide with ∆X. In any case, 2∆X always corresponds to the sum of the upper and lower error bars.

Furthermore, for strongly non-gaussian situations, such as the presence of degeneracies disfavoured only at

the 1σ level, higher confidence level regions may significantly differ from a naive rescaling of ∆X.
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Beta-beams are very intense νe or ν̄e beams produced from boosted radioactive ion

decays [13]. The beam has no other contamination and the flux can be determined with

very good accuracy from β-decay kinematics, by measuring the parent ion energy. The

appearance of muons in a far detector allows to measure the golden oscillation probability

Peµ. Additional information could be obtained from the observation of oscillations in the

νe disappearance channel (and its CP conjugate). However, this channel is systematics-

dominated and turns out to be rather ineffective [41]. The absence of νµ in the flux puts

the precise measurement of the atmospheric parameters out of reach for beta-beams. This

is a severe limitation of this facility, since we have found that a precise measurement of

atmospheric parameters is mandatory to achieve a good precision on δ (see also ref. [42]).

For this reason, we will combine the beta-beam simulations with information from the

disappearance channel at T2K. Such combination is not necessary for the other facilities

considered in this paper, since their expected precision in the atmospheric parameters is

already expected to be better than that achievable at T2K.

The spectrum and intensity of a beta-beam flux is fixed by the number of decaying

ions, the type of ion (6He, 18Ne are the preferred choices) and the boost factor γ. These

ions can be boosted up to γ ' 150(250) for 6He/18Ne, respectively, when using the existing

facilities at CERN. Replacing the SPS with a new refurbished accelerator would allow to

boost the same ions up to γ = 350/580. It has been shown that the beta-beam physics

reach improves with γ, due to their larger neutrino energies and longer baselines [43, 44].

We have therefore considered both a low-γ option [16, 41, 42, 45–49] (produced from the

decay of 6He /18Ne boosted to γ = 100), and a high-γ setup [43, 44, 50–64], produced from

the decay of the same ions boosted at γ = 350. These setups will be referred to as BB100

and BB350, respectively.

Neutrino factories are also intense (νe, ν̄µ) or (ν̄e, νµ) beams resulting from boosted

and cooled µ+ and µ− that decay in the straight sections of a storage ring aiming at a

far detector. As in the case of the beta-beam, the neutrino flux is known very accurately,

but in contrast with the beta-beam the charge of the muon in the far detector needs to be

determined, because the measurement of the Peµ comes from the determination of a small

wrong-sign muon component in a large sample of right-sign muons. It is mandatory, there-

fore, to have a magnetizable detector for this facility. The right-sign muon measurement,

on the other hand, gives the muon disappearance probability from which the atmospheric

parameters can be precisely determined.

Until recently, the baseline scenario of recent studies was the IDS-NF [14]. In this

scenario, Eµ ∼ 25 GeV and two baselines at 4000 and 7500 km were considered. However,

the detector placed at 7500 km from the source is mainly needed to solve degeneracies for

very small values of θ13 (sin2 2θ13 . 10−3), see refs. [65, 66]. Therefore, in light of the recent

measurements of T2K and Daya Bay, the magic baseline is most probably unnecessary. We

will therefore consider a 25 GeV one-baseline neutrino factory, which we call IDS1b. On

the other hand, a lower-energy neutrino factory [67–69] with Eµ = 10 GeV [70] has been

proposed as optimal if θ13 is large. We will refer to this setup as LENF.

In appendix A we provide the details of the beam and detectors for all the setups that

have been included in this study. Table 1 simply summarizes the values of some variables
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that determine to a large extent their physics reach. These are:

• the baseline L;

• the number of signal charged-current events in the assumption of maximal golden

channel conversion for both beam polarities, Nν/Nν̄ , which gives an idea of the real

statistical power of each setup;

• the number of background events to the golden signal, Bν/Bν̄ ;

• the average of the neutrino or antineutrino energy, 〈Eν〉/〈Eν̄〉, of the fully converted

events;2

• the dispersion of the neutrino/antineutrino energy, δEν/δEν̄ , which gives an idea of

the wideness of the beam;

• the average strength of matter effects, defined by

Â ≡ 2
√

2〈Eν〉GFne
|∆m2

13|
. (2.1)

As it is clear from the table all beams are rather wide, the narrowest being the off-axis

flux of T2HK with a spread of ∼22%, while the widest is LBNE with ∼39%. Statistics is

more significant in the neutrino factory setups, followed by the short-baseline super-beams

(T2HK, SPL). The more statistically limited setups are the long-baseline super-beams

and the beta-beams. Backgrounds are more significant in T2HK, while they are almost

negligible for the neutrino factories. Finally, matter effects are largest for the neutrino

factory setups, followed by the long-baseline super-beams.

3 Precision on θ13 and δ

In this section, we derive simple analytical arguments that allow to understand the basic

features of the results of section 4. In particular, we are interested in understanding the

dependence of precision on the true values of θ13 and δ. We first consider the approximate3

golden channel probability [72–74]:

P±
eµ(θ13, δ) = θ2

13 s
2
23

sin2[(1∓ Â)∆]

(1∓ Â)2
+ c2

23 sin2 2θ12∆2
12

[
sin(Â∆)

Â∆

]2

+θ13 2 sin 2θ12 sin 2θ23
∆12

∆
cos(∆∓ δ)sin(Â∆)

Â

sin[(1∓ Â)∆]

1∓ Â
,

= P±
µe(θ13,−δ) , (3.1)

2Note that, for some facilities, this average value is sometimes higher than the one required to be at the

first oscillation peak, which translates in a poorer performance. This is, for instance, the case for the SPL

setup, with a very high number of events at a mean energy of 0.58 GeV, far from the oscillation peak at the

130 km baseline at ∼ 0.26 GeV.
3In the case of large θ13, a more accurate expansion of the probability can be found in ref. [71]. We

consider here the approximate probability expanded in the assumption of small θ13 only for illustration

purposes, while for the numerical results presented throughout this paper the exact probabilities are used

instead.
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L Nν/Nν̄ Bν/Bν̄ 〈Eν〉/〈Eν̄〉 δEν/δEν̄ Â

T2K 295 2.6/0 ×103 46/0 0.72/– 0.27/– 0.02

NOνA 810 1.1/0.7 ×103 10/11 2.02/2.04 0.43/0.42 0.14

T2HK 295 4.3/1.3 ×105 4.3/1.5 ×103 0.79/0.80 0.18/0.18 0.022

LBNE 1290 2.3/0.9 ×104 302/201 3.55/3.50 1.38/1.33 0.30

SPL 130 2.5/1.6 ×105 1.1/1.2 ×103 0.59/0.57 0.20/0.21 0.017

C2P 2300 2.4/1.1 ×104 210/129 5.04/5.15 1.65/1.59 0.48

BB100 130 2.9/4.4 ×104 0.6/1.2 ×103 0.47/0.45 0.18/0.18 0.013

BB350 650 5.0/9.2 ×104 372/432 1.53/1.61 0.45/0.45 0.11

LENF 2000 8.1/5.3 ×105 48/81 6.75/6.78 1.81/1.79 0.63

IDS1b 4000 1.9/1.2 ×106 154/196 16.85/16.86 4.57/4.55 1.65

Table 1. Summary of the main details of the setups considered. From left to right the columns

present: the experiments baseline (in km); the total number of signal neutrinos and antineutrinos

including detector efficiencies and assuming a full flavour conversion of all events; the total number

of background events for the neutrino and antineutrino channels; the mean true energy of the total

events (in GeV); the energy dispersion of the total events (in GeV); and, the size of the matter

effects parametrized as Â.

where

∆ ≡ ∆m2
13L

4E
, ∆12 ≡

∆m2
12L

4E
, Â ≡

√
2GFneL

2∆
, (3.2)

and the ± corresponds to neutrino or antineutrinos. L and E are the baseline and neu-

trino/antineutrino energy, respectively. Although the number of events N in a given chan-

nel corresponds to the convolution of the probability with neutrino fluxes, νN CC cross-

sections and detector efficiencies, we will see that the dependence of ∆θ13 and ∆δ on the

true values of θ13 and δ can be understood assuming that N ∝ P .

3.1 Precision on θ13

We assume that all the considered facilities will measure two CP conjugated channels and

that the considered detectors will provide several energy bins. We also assume that these

measurements allow the determination of θ13 and δ with negligible correlations (this is a

reasonable assumption as long as the intrinsic degeneracy [65] is solved, as it is the case

for most of the facilities under study in this paper).

Using standard error propagation

∆N± =

∣∣∣∣∂N±
∂θ13

∣∣∣∣
(θ13,δ)

(∆θ13)± ∝ θ13
sin2[(1∓ Â)∆]

(1∓ Â)2
(∆θ13)± + . . . , (3.3)

where we have neglected subleading terms in P±. The error on the weighted average of

neutrino and antineutrino data is

∆θ13 '

(√
1

(∆θ13)2
+

+
1

(∆θ13)2
−

)−1

. (3.4)
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If the error on the number of oscillated events is dominated by the (gaussian) statistical

error, then ∆N± '
√
N±, and it follows that ∆θ13 is approximately independent of θ13

and δ. In this case, the relative error decreases linearly with θ13:

∆rθ13 ∝
1

θ13
. (3.5)

On the other hand, if the error is dominated by the systematic error on the signal, ∆N± ∝
N±, we get ∆θ13 ∝ θ13 and the relative error on θ13 is independent of θ13. Finally, if

the error is dominated by the error on the background (assumed independent on θ13)

∆θ13 ∝ 1/θ13 and ∆rθ13 ∝ 1/θ2
13. The dependence on δ in any case is expected to be small.

It is also interesting to understand what is the impact of matter effects on the precision

in θ13. From eq. (3.3) is is clear that the minimal error is obtained in the energy bin that

maximizes the oscillation term. In the presence of matter, this occurs at different bins

for neutrinos and antineutrinos: ∆ = π
2 (1 ∓ Â)−1. Combining the corresponding optimal

errors as in eq. (3.4), we find that the error decreases with increasing Â. Essentially, one

of the errors for neutrinos or antineutrinos (depending on the sign of Â) improves and the

other worsens, but the combination always improves. All other conditions being the same,

larger matter effects improve the precision in θ13.

3.2 Precision on δ

Let us now consider the error on δ. Under the same assumptions as before we have in

this case

∆N± '
√
N± =

∣∣∣∣∂N±
∂δ

∣∣∣∣ (∆δ)±, (3.6)

and

∆δ '

(√
1

(∆δ)2
+

+
1

(∆δ)2
−

)−1

. (3.7)

Now, the dependence on δ is much less trivial. We find

(∆δ)± ∝

∣∣∣∣∣ Â∆

sin Â∆

1

sin ∆∓ δ

∣∣∣∣∣ , (3.8)

where we just show the dependence on the parameters of interest. Note in particular

that the relative weight of the neutrino and antineutrino error can be different due to

the different fluxes and cross-sections. We have assumed that the flux × cross-section

goes as E2. Deviations from this behaviour will be different for the different setups under

consideration. We will therefore ignore these effects for the time being and indicate where

they could make a difference.

As it can be seen from eq. (3.8), the error now depends non trivially also on L/E. Let

us now consider various situations.
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Figure 1. ∆δ as a function of δ for ∆ = 1
2 ,

2
3 ,

5
6 , 1×

π
2 (dotted to solid) and with negligible matter

effects, assuming the same weight for neutrinos and antineutrinos (left) or 50% less antineutrinos

(right). The error plotted here corresponds to the approximate formula in eq. (3.10).

Vacuum. In this case the oscillation probability is maximal for neutrinos and antineutri-

nos at the same L/E, corresponding to the condition ∆ = (2n+ 1)π/2, with n integer. Let

us suppose that we have a narrow beam at the L/E corresponding to the first oscillation

maximum. We have then

(∆δ)± ∝
1

sin
(
π
2 ∓ δ

) . (3.9)

The combination of neutrinos and antineutrinos gives

∆δ ∝
√

1

1 + cos 2δ
. (3.10)

Thus, the error has a very strong dependence on δ which actually diverges if δ → π
2 ,

3π
2 .

If we move away from the oscillation maximum both to higher or lower values of L/E

the dependence on δ smooths out. On the left plot of figure 1 we show the result for

∆ = (1
2 ,

2
3 ,

5
6 , 1) × π

2 , assuming the same weight for neutrinos and antineutrinos. We see

that the error is constant only for some values of ∆ = π/4, 3π/4, . . ., while it is maximal at

δ = π/2, 3π/2 and minimal at δ = 0, π. The best error bar is smaller when the experiment

is close to oscillation maxima, but the worst error is also largest at the same point. This

indicates that if we just look at the sensitivity to CP violation we would rather be at

∆ = π/2, but if we instead look at the average precision on δ for any δ that is not the

preferred situation.

Clearly this also shows that those neutrino beams that in practice provide sufficient

information outside the peak, i.e. sufficient energy dependence, can help to reduce the

variation of ∆δ with δ.

When the weight for neutrinos and antineutrinos is significantly different and we con-

sider bins outside the peak, the maxima of ∆δ shift to the left (right) in δ, if the fraction

of antineutrinos is less (more) than that of neutrinos. This is shown in the right panel in

figure 1. Also the error is no longer constant for the special values ∆ = π/4, 3π/4.
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Figure 2. ∆δ as a function of δ for the µ→ e channel for Â = 1/10, 1/3, 5/12, 1/2 (dashed to solid),

assuming the same weight for neutrinos and antineutrinos. The error plotted here corresponds to

the result of substituting the approximate formula (3.11) in eq. (3.7).

Matter. In matter, the maxima of the oscillation probability for neutrinos and antineu-

trinos do not coincide. It is sensible to assume that most of the information in the neutrino

channel comes from the bin where the neutrino probability maximizes, i.e. (1−Â)∆ = π/2,

while in the antineutrino channel it comes from the bin where the antineutrino probability

maximizes, i.e. (1 + Â)∆ = π/2. The contribution to the error of both such bins is

(∆δ)± =

π
2

Â
(1∓Â)

sin
[
π
2

Â
(1∓Â)

] 1

sin
(
π
2

1
(1∓Â)

∓ δ
) , (3.11)

while for the T-conjugated channel νµ → νe we must substitute δ → −δ.
Figure 2 shows the dependence of ∆δ on δ for several values of Â, that is, of the

strength of matter effects. In this plot we observe the two main implications of matter

effects. First the peaks in ∆δ move to the left (right) in the µ → e (e → µ) channels.

Second the dependence on δ is smoothed out, but the best achievable precision gets worse,

as expected since matter effects tend to hide genuine CP violation.

In this case, if we move away from the peak, that is, (1∓ Â)∆ = επ2 with ε ≤ 1, there

is no improvement in ∆δ. Therefore we expect that energy dependence in the scenarios

with large matter effects will not be so important as in vacuum.

Under the previous assumptions we do not expect a significant dependence of ∆δ on

θ13 . On the other hand, if the error on N± is not dominated by the statistical error but

by the systematics of the signal or the background, a similar analysis shows that we should

expect some dependence on θ13. In particular, when the systematics on the background

dominates, we expect that the error is inversely proportional to θ13.
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Figure 3. ∆δ as a function of δ for the µ → e channel (left) in the C2P and T2HK setups, and

for the e → µ channel (right) in the BB350 and IDS1b setups. The different curves from red to

blue correspond to different values of θ13 = 3− 10◦, in steps of 0.25 degrees.

This naive analysis seems to explain rather well the qualitative features of the precision

on δ found in all scenarios considered in this paper. ∆δ as a function of δ is shown in

figure 3 for four facilities: T2HK and the BB350, which both involve small matter effects,

falling therefore in the vacuum category; and the C2P and the IDS1b, that involve a

significantly longer baseline and very significant matter effects (see table 1). The different

curves correspond to different values of θ13 = 3−10◦ (red to blue). As expected the maxima

move to the left for the long-baseline super-beam with respect to the short-baseline one,

while they move to the right for IDS1b with respect to the BB350.

The degradation of the error is very significant for the super-beams for θ13 below 6◦.

As explained above, the naive expectation is that, if the error is statistically dominated,

it should not depend on θ13. A dependence is expected however when the error becomes

systematics dominated. If it is due to the background systematics we expect a degradation

with decreasing θ13, while if it is due to signal systematics we expect a degradation with

increasing θ13. Indeed the degradation in the super-beams agrees with the expectation of

being background-systematics dominated. The situation for the BB350 and IDS1b setups

is different. These are much purer beams so background systematics start to be significant

only for smaller values of θ13. The error for the BB350 indeed shows a degradation at sig-

nificantly smaller values of θ13 compared to the super-beams. The IDS1b the error appears

consistent with being dominated by the systematics on the signal, therefore improving with

decreasing θ13.
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4 Results

We proceed now to compare the different setups4 on the basis of the precision observables

defined in section 2.

Solar and atmospheric input parameters have been fixed to their present best fit results

from the global fit analysis in ref. [75]: θ12 = 34.2◦, ∆m2
12 = 7.64 × 10−5 eV2, θ23 = 45◦,

∆m2
31 = 2.45×10−3 eV2. A normal hierarchy has been assumed in all cases. The confidence

regions have been obtained after marginalization over solar and atmospheric parameters,

assuming the following 1σ gaussian priors: 3% for θ12, 2.5% for ∆m2
12, 8% for θ23 and

4% for ∆m2
31. Finally, a 2% uncertainty over the PREM density profile [76] has been

also considered. Note that both super-beams and neutrino factories are sensitive to the

disappearance channel. Therefore, all of them are going to improve over the priors listed

above. This is not the case for the beta-beams, though, for which the data from T2K would

provide the effective priors for the atmospheric parameters instead.

As already stressed, no sign degeneracies have been considered for the results presented

here. For the region of the θ13 parameter space allowed by the Daya Bay data [1], the

neutrino factories and most of the beta-beam and super-beam setups considered are able to

measure the hierarchy. This is very unlikely, however, for T2HK, the SPL and the γ = 100

He/Ne beta-beam. There is some possibility that these experiments could measure the

hierarchy through atmospheric neutrino data, though (see, for instance, refs. [15, 16]), or

from their combination with INO and/or NOνA data (see, for instance, refs. [17–28]). For

the results presented here a normal hierarchy is always assumed. We have checked that

the results for an inverted hierarchy are very similar, although slightly deteriorated for the

facilities with lower antineutrino (vs neutrino) rates at the detector.

4.1 Precision on θ13

We first study the precision on θ13 that can be attained at the considered setups. It

is interesting to see how the precision of future facilities on θ13 would compare to the

achievable precision at reactor experiments and, in particular, to the precision achievable

at Daya Bay. The present error at the 1σ CL on θ13 is 9.3%, after only 55 days of data

taking. We show this result as an empty triangle in the figures. In view of this, it seems

reasonable to assume that this error will eventually be improved down to the systematic

level. Assuming that the best fit does not change in the future, this would correspond to

a relative precision of 2.8%, which is indicated through the black stars in the figures. We

have also included a vertical line at θ13 = 5.8◦, which corresponds to the 3σ lower bound

on θ13 for the Daya Bay result.

In figure 4 we present a comparison in terms of precision for the super-beam setups

defined in section 2. The comparison of both panels indicate that, within the Daya bay 3σ

region, all facilities have a comparable performance reaching a precision below∼ 5%. T2HK

4Note that the characteristics of each of the considered setups (baseline, energy, flux, efficiencies, back-

grounds and systematic errors) are fixed and that we have not studied how changing some or all of them

affects the precision observables. Our results would change if, for instance, the systematic errors or the

neutrino fluxes of a given experiment are varied.

– 11 –



J
H
E
P
0
6
(
2
0
1
2
)
0
7
3

Figure 4. Relative error on θ13 as a function of θ13 at 1σ (1 d.o.f.) for the considered super-beam

setups. Left panel: results for T2HK (blue, dashed lines) and LBNE (red, solid lines). Right panel:

results for SPL (blue, dashed lines) and C2P (red, solid lines). The width of the bands shows the

dependence with the value of δ. The empty triangle shows the present precision at 1σ for Daya

Bay, while the star represents the ultimate attainable precision, corresponding only to the quoted

systematic error. Both points are shown for the present best fit. The vertical line corresponds to

the present Daya Bay 3σ lower bound. A true normal hierarchy has been assumed and no sign

degeneracies have been taken into account.

performs slightly better, with a precision below 4% in the whole region. It is remarkable,

however, that none of the considered super-beams can improve over the expected ultimate

precision of Daya Bay.

Within the Daya bay 3σ region, we can see that the scaling with θ13 of ∆rθ13 of “short”

(T2HK and the SPL) and “long” (LBNE and C2P) baseline super-beams is different: for

short baseline super-beams, the relative precision on θ13 is roughly independent of θ13,

indicating that precision in these facilities is limited by the systematics of the signal in this

regime; for long baseline super-beams the precision improves with θ13, instead, as expected

when the error is statistics-dominated. Below the Daya Bay 3σ bound, on the other hand,

all super-beams show a significant degradation of ∆rθ13. This is due to the fact that,

for such small values of θ13, the signal is considerably reduced and the systematics on

the background start to dominate the error instead. The bands are in all cases relatively

narrow, which means that the precision on θ13 does not depend significantly on δ.

In figure 5 we compare the precision on θ13 attainable in the beta-beam and neutrino

factory setups. For all of these setups we can see that the precision improves linearly

with θ13, indicating that ∆θ13 is statistically dominated. This is not surprising, since
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Figure 5. Relative error on θ13 as a function of θ13 at 1σ (1 d.o.f.) at the considered beta-beam

(left) and neutrino factory (right) setups. Left panel: results for BB100 (blue, dashed lines) and

BB350 (red, solid lines). Right panel: results for LENF (blue, dashed lines) and IDS1b (red, solid

lines). The width of the bands shows the dependence with the value of δ. The empty triangle shows

the present precision at 1σ for Daya Bay, while the star represents the ultimate attainable precision,

corresponding only to the quoted systematic error. Both points are shown for the present best fit.

The vertical line corresponds to the present Daya Bay 3σ lower bound. A true normal hierarchy

has been assumed and no sign degeneracies have been taken into account.

backgrounds and systematic errors are typically under better control at beta-beam and

neutrino factory facilities with respect to super-beams.

The attainable precision on θ13 at both beta-beam setups ranges from ∼ 6% to ∼ 4%

within the Daya Bay 3σ allowed region. This is significantly worse than the performance

of the considered super-beams, even though the expected number of unoscillated events

at the detector is larger than for the LBNE and C2P proposals (see table 1). This is

because matter effects are small for the beta-beam, while they are very significant in the

LBNE and C2P setups. As shown in section 3, matter effects are helpful to reduce the

error on θ13. In the case of the SPL and T2HK setups, even though matter effects are

also small, the larger statistics compensates resulting in a similarly good measurement of

θ13. The relative performance of super-beam and beta-beam setups is, however, of little

relevance, considering that none of these setups can improve over a systematics-dominated

measurement by Daya Bay.

Only the neutrino factories could reduce the 1σ range below ∼ 2%. We can indeed see

that, within the 3σ Daya Bay region, the IDS1b (LENF) setup reaches a relative precision

on θ13 that ranges from 2.5% (2.7%) to 1.4% (1.5%). Both facilities outperform significantly

the considered super-beams and beta-beams.
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Figure 6. Error on δ as a function of δ at 1σ (1 d.o.f.) for the combination of T2K and NOνA, for

θ13 = 8.8◦. A true normal hierarchy has been assumed, and no sign degeneracies have been taken

into account.

4.2 Precision on δ

We now consider the precision on δ that can be attained at the considered setups.

First of all, we show in figure 6 the error on δ as a function of the true value of

δ for the combination of T2K and NOνA, for θ13 = 8.8◦. Note that the error on δ is

larger than 25◦ for any value of δ, i.e. the precision on δ of these facilities is rather poor.

As can be seen from the figure, two large peaks appear for δ ∼ ±π/2, as expected from

the analytical results in section 3. The fine structure of the peaks is due to the intrinsic

degeneracies. The intrinsic degeneracy location strongly depends on the energy and on the

beam characteristics [77]. In vacuum, it appears roughly at the same value of θ13 of the

true solution but with δ shifted to π−δ [65]. The true solution and the intrinsic degeneracy

become very close around δ = ±π/2 and eventually fuse into a single region, which can

be hard to resolve with insufficient energy resolution. The double peak structure seen

in figure 6 around δ = ±π/2 corresponds to the point in which the intrinsic degeneracy

appears and joins with the true solution, dramatically increasing the error on δ. When δ is

exactly ±π/2, the true solution and its intrinsic degeneracy overlap and a local minimum

appears with better precision.

In figure 7 we present a comparison of the super-beam setups. The qualitative be-

haviour described in section 3 is clearly observed in the numerical results. The short-

baseline super-beams, T2HK and SPL, fall into the vacuum category, and attain the

worst (best) precision at δ = ±π/2 (δ = 0, π). The longer baseline super-beams, LBNE

and C2P, for which matter effects are very significant (see table 1) fall into the matter

category and achieve the worst precision at smaller values of δ. The shift of the positions

of maxima and minima is more significant in the case of the longer baseline, C2P. Both

facilities in the vacuum regime have similar results, with ∆δ ranging from 7◦ (8◦) to 16◦
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Figure 7. Error on δ as a function of δ at 1σ (1 d.o.f.) at the considered super-beam setups. The

bands indicate the dependence on θ13 ∈ [5.7◦, 10◦] (the lower bound is the 3σ limit of Daya Bay).

Left panel: results for T2HK (blue, dashed lines) and LBNE (red, solid lines). Right panel: results

for the SPL (blue, dashed lines) and C2P (red, solid lines) setups. A true normal hierarchy has

been assumed, and no sign degeneracies have been taken into account.

(15◦) at T2HK (the SPL). On the other hand, C2P presents the best performance in the

matter regime, with ∆δ ranging from 11◦ to 17◦. The dependence on θ13, i.e. the width of

the bands, is rather small and it will be further reduced as the error on θ13 will improve.

Although larger matter effects imply also worse precision at the optimal points, it

could be interesting to combine super-beams in the vacuum and matter regimes to reduce

the dependence of ∆δ on δ, due to the displacement of the maxima in presence of matter

effects. Another possibility to exploit this effect would be to combine data for two neutrino

beams aimed at the same detector but peaked at different energies, as the proposed setup

in ref. [78]. In this case, even if the baseline is the same, the value of Â would be very

different, therefore providing the desired effect.

In figure 8 we compare the error on δ in the beta-beam and neutrino factory setups.

In this case the beta-beam setups belong to the vacuum category and, as a result, the

precision on δ at this facilities have a strong dependence on δ. The BB350 (BB100)

achieves a very good precision for δ = 0, π, with ∆δ ∼ 5◦(6◦). The worst precision is

found, as expected, at δ = ±π/2 for both setups. Their precision for maximal CP violation

is, however, rather different: whereas for the BB350 we get ∆δ ∼ 14◦ (similar to what

we have found for T2HK and the SPL), the precision at the BB100 is significantly worse,

∆δ ∼ 23◦. Indeed, besides the expected degradation of the measurement of δ around

δ = ±π/2, we find that the intrinsic degeneracies are not solved in this case. This is due

to the limited energy resolution of our simulation, and this problem may be alleviated

with a more updated study of the detector response to the beta-beam fully exploiting its

energy resolution capabilities. The neutrino factory setups belong to the matter regime
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Figure 8. Error on δ as a function of δ at 1σ (1 d.o.f.) at the considered beta-beam and neutrino

factory setups. The bands indicate the dependence on θ13 ∈ [5.7◦, 10◦] (the lower bound is the 3σ

limit of Daya Bay). Left panel: results for BB100 (blue, dashed lines) and BB350 (red, solid lines).

Right panel: results for the LENF (blue, dashed lines) and IDS1b (red, solid lines). A true normal

hierarchy has been assumed, and no sign degeneracies have been taken into account.

(in fact, they have the strongest matter effects of all facilities) and the dependence of ∆δ

on δ is, therefore, strongly suppressed. Both setups have very similar performances, with

∆δ ranging from 4◦ to 7◦. Note that the precision on δ achieved at neutrino factories and

beta-beam setups for δ ∼ 0, π is also very similar. Both type of beams, therefore, are

comparable in their ability to discover CP violation. On the other hand, beta-beams have

a worse average precision on δ.

We have found, however, that the performance of the neutrino factory setups is strongly

affected by the assumption on the systematic error on the matter density. If we increase the

matter density uncertainty from 2% to 5%, the precision on δ gets worse by approximately

3◦ in the whole δ range. The effect is much less relevant in other facilities.

As a final remark, we have checked the impact of adding a prior on θ13 corresponding

to the expected ultimate precision of the Daya Bay experiment to each facility. The most

remarkable effect was the resolution of the intrinsic degeneracy for the BB100 setup that

improves its precision by ∼ 4◦ at the worse points. The performance of T2HK and the

SPL also improved 1◦− 2◦ while the impact of the additional prior in the other setups was

rather mild.

5 Conclusions

We have studied the precision on the parameters θ13 and δ that would be attainable

at future neutrino oscillation experiments, assuming that the true value of θ13 is in the

range indicated by the recent measurements of T2K and Daya Bay. We have simulated
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Figure 9. 1σ (1 d.o.f.) precision on θ13 (left panel) and δ (right panel) for the C2P (green, dashed-

dotted lines) and T2HK (yellow, dotted lines) super-beams; the γ = 350 beta-beam (red, solid

lines); and the 10 GeV Low-Energy Neutrino Factory (blue, dashed lines). A true normal hierarchy

has been assumed, and no sign degeneracies have been taken into account. On the left panel, the

empty triangle represents the present precision at 1σ for Daya Bay, while the star represents the

ultimate attainable precision, corresponding only to the quoted systematic error. Both points are

shown for the present best fit from Daya Bay only. The width of the bands in each panel represent

the dependence of ∆rθ13 on δ (left panel) and the dependence of ∆δ on θ13 when it is varied in the

range [5.7◦, 10◦] (right panel).

the performance of various setups using different neutrino beam technologies: conven-

tional neutrino beams and super-beams, beta-beams and neutrino factories. We have

compared their performance in terms of the relative precision in θ13 (∆rθ13), and the

absolute precision in δ, ∆δ.

The error on the CP phase depends on the true values of the parameters very signifi-

cantly. As a result, measuring the performance of an experiment only in terms of the CP

discovery potential, which is sensitive to the precision only close to the points δ = 0, π,

can be misleading in some cases. The basic qualitative features of the dependence of ∆δ

and ∆rθ13 on the true values of the parameters can be understood from simple arguments

using the approximate oscillation probabilities in the golden channel, as shown in section 3.

In particular, when the baseline corresponds to vacuum oscillations, the worst precision in

δ corresponds precisely to the points where CP violation is maximal, δ = ±π/2. This is

modified when matter effects are large.

Figure 9 shows the comparison of four representative setups. These are: T2HK and

the CERN to Pyhasälmi (C2P) super-beams, the γ = 350 beta-beam (BB350) and the

10 GeV low-energy neutrino factory (LENF). It should be stressed, however, that the other

super-beam and neutrino factory setups have similar performances.
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Regarding the precision in θ13 and in δ, neutrino factories are the optimal setup for

both observables. They can reach a 1.5%-2.5% accuracy in θ13 and measure the CP phase

with an error better than 7◦. The super-beams outperform the beta-beam (but not Daya

Bay) in the precision on θ13, but the latter can do significantly better in CP violation,

except in a small region around maximal CP violation where they are comparable.

The results for θ13 in the beta-beam setups are worse than in super-beams because

the former are statistically limited when compared to the SPL or T2HK, while operating

at too short a baseline (i.e. with small matter effects, see table 1 ) when compared to the

LBNE and C2P setups. Regarding the precision on δ, the performance of the beta-beams

around δ = 0, π is at the level of the neutrino factories, while it is much worse around

δ = ±π/2. Although maximal error is expected at these points because matter effects are

small, in the case of the beta-beams the deterioration is aggravated by their inability to

measure the atmospheric parameters at the level of a super-beam or a neutrino factory.

When the most aggressive γ = 350 beta-beam is combined with the disappearance data

from T2K, we find that its performance in ∆δ is better than that of the super-beam setups

considered in this paper.

In any case, our results indicate that super-beams are clearly well fitted for the race

to discover CP violation and measure δ with reasonably good precision. A combination of

super-beams operating in the vacuum and matter regimes could reduce the large depen-

dence of ∆δ on the true value of the CP phase. Alternatively, one could combine data for

two neutrino beams aimed at the same detector but peaked at different energies, as the

proposed setup in ref. [78].

We should stress however that the performance of the facilities that we have presented

depends significantly on the assumed systematic errors. If any of our hypothesis about

fluxes, detector systematics or parameter systematics (such as the error on the matter

density) would turn out to be very different, the conclusions concerning the relative merit

of each setup could change significantly.
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L (km) Det. (kton) MW (tν , tν̄) Refs.

T2K 295 WC (22.5) 0.75 (5,0)
[79–83]

NOνA 810 TASD (15) 0.7 (3,3)

T2HK 295 WC (500) 4.0 (4,4) [38, 84, 85]

LBNE 1290 LAr (33.4) 0.7 (5,5) [33, 86, 87]

SPL 130 WC (440) 4.0 (2,8) [16, 36]

C2P 2300 LAr (100) 0.8 (5,5) [33, 88, 89]

Table 2. Summary of the main details for the conventional beam and super-beam setups that

have been presented in the comparison. From left to right, each column indicates the baseline, the

detector technology (Water Čerenkov, Totally Active Scintillator Detector, or Liquid Argon) and

its fiducial mass, the beam power, the number of years that the experiment would be running in

ν and ν̄ modes, and the references which have been followed in order to simulate each setup. It

should be noted that the numbers quoted in this table correspond to the values stated in the cited

references, where the beam power in each case has been computed according to a certain number

of useful seconds per year (which in general do not coincide): T2K and T2HK assume 130 useful

days per year (1.12× 107 secs, approx.); NOνA assumes 1.7×107 sec×yr−1; LBNE assumes 2× 107

sec×yr−1; and SPL and C2P assume 107 sec×yr−1.

A Experimental setups

In this appendix we present the technical details of the simulations performed for the

various setups included in this paper.

Table 2 summarizes the main features of the conventional and super-beam experi-

ments which have been presented in the comparison. We have included the combination of

T2K [38] and NOνA [80], simulated as in ref. [79]. Their combination describes what can be

obtained in terms of precision for δ without building any other neutrino oscillation facility.

We have also included in our comparison the T2HK [38–40] and LBNE proposals [33].

In the case of LBNE, the fluxes and migration matrices that have been used to simulate

the response of the detector have been kindly provided by the LBNE collaboration [86, 87].

Fluxes in this case correspond to 120 GeV protons and 7.3× 1020 PoT per year.

We have also considered two super-beam setups proposed in Europe, namely the SPL

option as well as a setup with a much longer baseline (2300 km, from CERN to Py-

hasälmi) aiming at a LAr detector, C2P. For the SPL, the implementation of the water

Čerenkov detector has been performed according to ref. [16]. The flux has been provided

by A. Longhin [36] for 4.5 GeV protons, assuming 5.6×1022 PoT per year. For C2P, the

implementation of the LAr detector has been done according to refs. [33, 90]. In this case,

fluxes correspond to 1× 1021 PoT per year for a proton energy of 50 GeV, and have been

provided by A. Longhin [88].

For the majority of the setups described above, systematic errors are taken as constant

normalization errors over the signal and background rates. Therefore, they are correlated

between different energy bins, but uncorrelated between different channels (a 5% uncer-

tainty was assumed for all of them). However, in some cases the treatment of systematics

is either more sophisticated (as it is the case for T2K and NOνA) or takes into account
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the effect of a near detector (this is the case of LBNE). We refer the interested reader to

the references quoted in table 2.

In the case of beta-beams, the standard ion fluxes considered in the literature are

1.1(2.8) × 1018 useful 18Ne (6He) decays per year. The total neutrino flux depends also

on the γ factor. In the original proposal [13], ions were boosted using the existing CERN

accelerator complex and, therefore, γ ' 100 was chosen. Due to this limitation, the neutrino

flux is roughly an order of magnitude worse than that of super-beams and for this reason

the physics reach of low-γ beta-beams is generally limited when compared to multi-MW

super-beams such as T2HK or the SPL proposals. In order to improve the statistics, higher

γ factors (that could be reached at CERN only with a new, refurbished, SPS) have been

proposed to increase the energy of the beam. Therefore, we have included in our comparison

both the original proposal as well as a variation where the boost factor is increased up to

γ = 350 [43, 44]. In both cases, the migration matrices and efficiencies for a WC detector

exposed to a beta-beam have been taken from ref. [44]. Finally, as commented in section 2,

we have observed that the precision on the atmospheric parameters has a relevant impact

on the precision available for the beta-beam setups around δ = ±90◦. Therefore, we have

combined them with the disappearance data that can be obtained at T2K, which has been

simulated according to the details in table 2.

A further limitation for the physics reach of beta-beams, which is particularly relevant

in the case of low-γ setups, is the atmospheric backgrounds expected at low energies (see,

for instance, ref. [49]). However, this background is most relevant for small values of θ13. In

order to suppress the atmospheric background at the detector, the ions would be stored in

very small bunches, occupying only a very small fraction of the storage ring. This is known

as the suppression factor. However, the atmospheric background is much less troublesome

for the present best fit for θ13 from Daya Bay and this requirement could probably be

relaxed, with a consequent increase in the number of useful ion decays per year. The

atmospheric background has not been included in any of the simulations presented in this

paper. We have checked, though, that the inclusion of the atmospheric background with

a conservative 10−2 suppression factor and a moderate 20% increase in the flux actually

improves slightly the results presented.

Systematic uncertainties at a beta-beam are expected to be much smaller than at

a super-beam experiment. Therefore, the constant normalization systematic errors have

been set to 2.5% and 5% for the signal and background, respectively, for the two beta-

beam setups under consideration. These are fully correlated between the different bins,

but uncorrelated between different channels.

Finally, two different Neutrino Factories (NF) have also been included in our compari-

son. We have only included one-baseline setups, since the main purpose of placing a second

detector at the magic baseline was to lift degeneracies in the case of a very small θ13. We

have included a high energy setup, with a baseline of 4000 km and a parent muon energy of

25 GeV (which is just a modification of the setup in ref. [14], albeit with doubled neutrino

flux, since all muons can be aimed at a single detector), and a low energy version, with a

parent muon energy of 10 GeV and a baseline of 2000 km, following ref. [70]. In both cases,

a 100 kton MIND detector has been simulated using the migration matrices from ref. [91].
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Even though these migration matrices were computed for the appearance channels, we have

also used them for the disappearance channels. This may be too conservative since the cuts

needed to reduce the backgrounds for the appearance signal could probably be relaxed for

the disappearance signal. However, the very large statistics of the disappearance channel

would largely compensate for any possible effect.

The NF is also expected to have low systematic errors. Therefore, constant normal-

ization errors of 2.5% and 5% have been considered for the signal and the background,

respectively, for the two setups under consideration. These are fully correlated between

different bins, but uncorrelated between different channels.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance

at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

[2] T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an

accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801

[arXiv:1106.2822] [INSPIRE].

[3] DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor

electron antineutrinos in the double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801

[arXiv:1112.6353] [INSPIRE].

[4] MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to

electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802

[arXiv:1108.0015] [INSPIRE].

[5] M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing:

status of the hints of θ13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].

[6] G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ13 > 0 from global

neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].

[7] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174

(1986) 45 [INSPIRE].

[8] ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future

neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201

[arXiv:0710.4947] [INSPIRE].

[9] S. Geer, Neutrino beams from muon storage rings: characteristics and physics potential,

Phys. Rev. D 57 (1998) 6989 [Erratum ibid. D 59 (1999) 039903] [hep-ph/9712290]

[INSPIRE].

[10] A. De Rujula, M. Gavela and P. Hernández, Neutrino oscillation physics with a neutrino

factory, Nucl. Phys. B 547 (1999) 21 [hep-ph/9811390] [INSPIRE].

[11] M. Apollonio, A. Blondel, A. Broncano, M. Bonesini, J. Bouchez, et al., Oscillation physics

with a neutrino factory, hep-ph/0210192 [INSPIRE].

– 21 –

http://arxiv.org/abs/1203.1669
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1669
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://arxiv.org/abs/1106.2822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2822
http://arxiv.org/abs/1112.6353
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6353
http://dx.doi.org/10.1103/PhysRevLett.107.181802
http://arxiv.org/abs/1108.0015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0015
http://dx.doi.org/10.1007/JHEP04(2010)056
http://arxiv.org/abs/1001.4524
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.4524
http://dx.doi.org/10.1103/PhysRevD.84.053007
http://arxiv.org/abs/1106.6028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.6028
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://inspirehep.net/search?p=find+J+Phys.Lett.,B174,45
http://dx.doi.org/10.1088/0034-4885/72/10/106201
http://arxiv.org/abs/0710.4947
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.4947
http://dx.doi.org/10.1103/PhysRevD.57.6989
http://arxiv.org/abs/hep-ph/9712290
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9712290
http://dx.doi.org/10.1016/S0550-3213(99)00070-X
http://arxiv.org/abs/hep-ph/9811390
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9811390
http://arxiv.org/abs/hep-ph/0210192
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0210192


J
H
E
P
0
6
(
2
0
1
2
)
0
7
3

[12] J. Gomez-Cadenas and D.A. Harris, Physics opportunities at neutrino factories, Ann. Rev.

Nucl. Part. Sci. 52 (2002) 253.

[13] P. Zucchelli, A novel concept for a anti-nu/e/nu/e neutrino factory: the β beam, Phys. Lett.

B 532 (2002) 166 [INSPIRE].

[14] IDS-NF collaboration, S. Choubey et al., International design study for the neutrino

factory, interim design report, arXiv:1112.2853 [INSPIRE].

[15] P. Huber, M. Maltoni and T. Schwetz, Resolving parameter degeneracies in long-baseline

experiments by atmospheric neutrino data, Phys. Rev. D 71 (2005) 053006

[hep-ph/0501037] [INSPIRE].

[16] J.-E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, Physics potential of the

CERN-MEMPHYS neutrino oscillation project, JHEP 04 (2007) 003 [hep-ph/0603172]

[INSPIRE].

[17] T. Tabarelli de Fatis, Prospects of measuring sin2 2θ13 and the sign of δm22 with a massive

magnetized detector for atmospheric neutrinos, Eur. Phys. J. C 24 (2002) 43

[hep-ph/0202232] [INSPIRE].

[18] J. Bernabeu, S. Palomares Ruiz and S. Petcov, Atmospheric neutrino oscillations, θ13 and

neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [INSPIRE].

[19] S. Palomares-Ruiz and S. Petcov, Three-neutrino oscillations of atmospheric neutrinos, θ13
neutrino mass hierarchy and iron magnetized detectors, Nucl. Phys. B 712 (2005) 392

[hep-ph/0406096] [INSPIRE].

[20] D. Indumathi and M. Murthy, A question of hierarchy: matter effects with atmospheric

neutrinos and anti-neutrinos, Phys. Rev. D 71 (2005) 013001 [hep-ph/0407336] [INSPIRE].

[21] S. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric

neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].

[22] INO collaboration, V. Arumugam et al., India-based Neutrino Observatory: interim project

report. Vol. 1.

[23] A. Samanta, The mass hierarchy with atmospheric neutrinos at INO, Phys. Lett. B 673

(2009) 37 [hep-ph/0610196] [INSPIRE].

[24] R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta, S.U. Sankar, et al., Mass hierarchy

determination via future atmospheric neutrino detectors, Phys. Rev. D 76 (2007) 073012

[arXiv:0707.1723] [INSPIRE].

[25] O. Mena, I. Mocioiu and S. Razzaque, Neutrino mass hierarchy extraction using atmospheric

neutrinos in ice, Phys. Rev. D 78 (2008) 093003 [arXiv:0803.3044] [INSPIRE].

[26] R. Gandhi, P. Ghoshal, S. Goswami and S.U. Sankar, Resolving the mass hierarchy with

atmospheric neutrinos using a liquid argon detector, Phys. Rev. D 78 (2008) 073001

[arXiv:0807.2759] [INSPIRE].

[27] A. Samanta, Discrimination of mass hierarchy with atmospheric neutrinos at a magnetized

muon detector, Phys. Rev. D 81 (2010) 037302 [arXiv:0907.3540] [INSPIRE].

[28] M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOvA,

arXiv:1203.3388 [INSPIRE].

[29] W. Winter, Understanding CP phase dependent measurements at neutrino superbeams in

terms of bi-rate graphs, Phys. Rev. D 70 (2004) 033006 [hep-ph/0310307] [INSPIRE].

– 22 –

http://dx.doi.org/10.1146/annurev.nucl.52.050102.090653
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090653
http://dx.doi.org/10.1016/S0370-2693(02)01576-9
http://dx.doi.org/10.1016/S0370-2693(02)01576-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B532,166
http://arxiv.org/abs/1112.2853
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2853
http://dx.doi.org/10.1103/PhysRevD.71.053006
http://arxiv.org/abs/hep-ph/0501037
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501037
http://dx.doi.org/10.1088/1126-6708/2007/04/003
http://arxiv.org/abs/hep-ph/0603172
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603172
http://dx.doi.org/10.1007/s100520200935
http://arxiv.org/abs/hep-ph/0202232
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202232
http://dx.doi.org/10.1016/j.nuclphysb.2003.07.025
http://arxiv.org/abs/hep-ph/0305152
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0305152
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.045
http://arxiv.org/abs/hep-ph/0406096
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406096
http://dx.doi.org/10.1103/PhysRevD.71.013001
http://arxiv.org/abs/hep-ph/0407336
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407336
http://arxiv.org/abs/hep-ph/0511277
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0511277
http://dx.doi.org/10.1016/j.physletb.2009.01.067
http://dx.doi.org/10.1016/j.physletb.2009.01.067
http://arxiv.org/abs/hep-ph/0610196
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0610196
http://dx.doi.org/10.1103/PhysRevD.76.073012
http://arxiv.org/abs/0707.1723
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1723
http://dx.doi.org/10.1103/PhysRevD.78.093003
http://arxiv.org/abs/0803.3044
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3044
http://dx.doi.org/10.1103/PhysRevD.78.073001
http://arxiv.org/abs/0807.2759
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2759
http://dx.doi.org/10.1103/PhysRevD.81.037302
http://arxiv.org/abs/0907.3540
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3540
http://arxiv.org/abs/1203.3388
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3388
http://dx.doi.org/10.1103/PhysRevD.70.033006
http://arxiv.org/abs/hep-ph/0310307
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0310307


J
H
E
P
0
6
(
2
0
1
2
)
0
7
3

[30] P. Huber, M. Lindner and W. Winter, From parameter space constraints to the precision

determination of the leptonic Dirac CP phase, JHEP 05 (2005) 020 [hep-ph/0412199]

[INSPIRE].

[31] P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation

experiments with GLoBES (general long baseline experiment simulator), Comput. Phys.

Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

[32] P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation

of neutrino oscillation experiments with GLoBES 3.0: general long baseline experiment

simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

[33] LBNE collaboration, T. Akiri et al., The 2010 interim report of the long-baseline neutrino

experiment collaboration physics working groups, arXiv:1110.6249 [INSPIRE].

[34] CERN working group on Super Beams collaboration, J.J. Gomez-Cadenas et al.,

Physics potential of very intense conventional neutrino beams, hep-ph/0105297 [INSPIRE].

[35] J.E. Campagne and A. Cazes, The θ13 and δCP sensitivities of the SPL-Frejus project

revisited, Eur. Phys. J. C 45 (2006) 643 [hep-ex/0411062] [INSPIRE].

[36] A. Longhin, A new design for the CERN-Fréjus neutrino super beam, Eur. Phys. J. C 71
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νµ → νe dans l’experiénce T2K depuis l’étude des données recueilles dans l’éxperience K2K,
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